Investigate the effect of hydrothermal temperature on the structure and characterization of 20 % ZnO-Cu_2O nanocomposite

Nguyen Thi Tuyet Mai, Nguyen Thi Lan, Nguyen Kim Nga, Ta Ngoc Dung, Huynh Dang Chinh

School of Chemical Engineering, Hanoi University of Science and Technology, Ha Noi, Vietnam
mai.nguyenthituyet@hust.edu.vn

Abstract
The ZnO with 20 mol.% was hybridized with Cu_2O to fabricate nanocomposites (20 % ZnO-Cu_2O (ZC NCs)) were prepared by hydrothermal method at the investigated temperatures of (120, 200 and 250) °C. The structural properties and characterization of the materials were investigated by physical measurements including: XRD, SEM, EDX and solid sample UV-Vis spectra. The results showed that the fabricated material samples consist of two crystalline phases (ZnO wurtzite and Cu_2O octahedra) with calculated lattice parameters that are suitable for each type of crystal of the material. The average crystal sizes of the ZC120, ZC200 and ZC250 samples were (20.08, 20.36 and 22.50) nm respectively, which were grown larger when the hydrothermal temperature increase. The optical bandgap energy (E_g) of the ZC120, ZC200 and ZC250 material samples was determined to be (2.51, 2.52 and 2.56) eV, respectively. These E_g values of the fabricated ZC NCs samples were intermediate between the two types of ZnO (E_g ~ 3.37 eV) and Cu_2O (E_g ~ 2.17 eV) materials, and was valid in the excitation region of visible light.

© 2023 Journal of Science and Technology – NTTU

1 Introduction
Nanocomposites (also known as hybrid or grafting materials) between two or more different types of semiconductors have been and are being studied. Because these materials have enhanced beneficial properties compared to single materials. For example, Cu_2O@TiO_2 composite materials, Zn_{1-x}Cu_xO hybrid materials, Cu_2O-ZnO nanocomposites, Fe_2O_3 doped ZnO nanostructured materials, etc. These nanocomposites have enhanced the beneficial properties such as reducing the nanocrystal particle size, increasing the porosity of the material, and reducing the band gap energy more than semiconductors which have with the wide optical band gap energy [1-4]. These properties of materials are desirable properties to be improved in order to enhance efficiency in the field of application of the material such as: the application range uses light in the visible region, enhancing the efficiency of photogenerated electron-hole pairs separation and reducing the recombination rate of these electron-hole pairs [3-5]. The ZnO semiconductor material is one of the unique semiconductor materials with a wide direct optical band gap (E_g ~ 3.37 eV) and a high exciton binding energy of 60 meV. ZnO is a material studied in many fields of application such as sunscreen, colorants, food additives, photocatalysts for pollution control, antibacterial agents, optical biosensors, nanoluminescent material [6,7]. The Cu_2O semiconductor material is a p-type semiconductor that is characterized by its narrow optical band gap energy E_g ~ (2.0-2.2) eV. The diverse applications using Cu_2O are solar cells, fungicides, antibacterial agents, catalysts using
sunlight, gas sensors, biosensors [8-11]. The fabrication of composite materials (hybrid or grafting materials) between two types of ZnO and Cu2O materials is one of the currently interested and researched composite materials systems. Composite materials between ZnO and Cu2O achieve more beneficial properties than single materials in terms of reducing the crystal grain size; reducing the band gap energy (compared to the wide bandgap energy of ZnO); improving the separation efficiency and reducing the photogenerated electron-hole recombination rate of single materials [5,7,8,11-21]. In the content of this research, we present the investigation of the influence of different hydrothermal temperatures on the structural properties and characterizations of 20 % ZnO-Cu2O nanocomposites (ZnO of 20 mol% doped Cu2O materials, designated as ZC NCs).

2 Materials and methods
2.1 Used chemicals
Zinc nitrate hexahydrate (Zn(NO3)2.6H2O 99 %, AR-China); Copper(II) sulfate pentahydrate (CuSO4.5H2O 99.8 %, AR-China); Sodium hydroxide (NaOH 99 %, AR-China); hydrazine hydrate (N2H4.H2O 80 %, AR-China); Double distilled water.

2.2 Experimental process
A solution consisting of 0.25M Zn(NO3)2 solution and 1M NaOH solution (taken according to the molar ratio of Zn2+:Na+ = 1:1.6) was stirred uniformly on a magnetic stirrer for 15 minute (solution A). Another mixed solution including 0.25M CuSO4 solution, 1M NaOH solution and Na2H4.H2O solution (with the molar ratio Cu2+:Na+:N2H4 = 1:1.6:0.32) also was stirred uniformly on a magnetic stirrer for 60 min at a heating temperature of 75 °C (solution B). Next, mixed solution A was slowly added to mixed solution B to get mixed solution C and continued to stir this mixed solution C for another 30 minutes (in which, the amount of Zn(NO3)2 mixed with CuSO4 in mixed solution C according to the molar ratio of Zn2+:Cu2+ = 0.2:1). Finally, the mixed solution C was transferred to the autoclave and hydrothermally heated at the temperatures of (120, 200 and 250) °C for 6 hours. The paste powder sample after hydrothermal process was washed by centrifugation several times with double distilled water until the sample reached pH ≈ 7. These clean paste powder samples was dried at 90 °C for 24 hours. The obtained products were light reddish brown fine powder samples that were 20 % ZnO-Cu2O nanocomposites (ZC NCs). The sample symbols corresponding to the above hydrothermal temperatures were of ZC120, ZC200, ZC250, respectively.

The methods for measuring material characterizations include: X-ray diffraction (XRD, Xpert Pro, Cu-Kα radiation λ = 1.54065 Å, scanning speed 0.03%2s); Scanning electron microscopy (SEM, TM4000 Plus); X-ray energy scattering spectra (EDX, Oxford 300); Solid UV-Vis absorption spectra (Jasco V-750), 60 mm integrated sphere (ISV-922).

3 Results and discussion
3.1 X-ray diffraction results (XRD)
The X-ray diffraction (XRD) spectra of the ZC120, ZC200 and ZC250 nanocomposites (20 % ZnO-Cu2O nanocomposites) were shown in Fig. 1a, Fig. 1b and Fig. 1c, respectively. Fig. 1d was the superimposed XRD spectra of the ZC120, ZC200, ZC250 nanocomposite samples. The XRD spectra in Fig. 1(a,b,c,d) shows that the ZC120, ZC200, ZC250 samples all had diffraction peaks at the diffraction angle positions 2θ ≈ 42.4° and 50.9° corresponded to the (200) and (211) diffraction planes of octahedra phase Cu2O [5,8,9,11]. Diffraction spectra of ZC120, ZC200 samples (Fig. 1a, Fig. 1b) shows that there were more diffraction peaks at position 2θ ≈ 36.5° corresponding to the (111) diffraction plane of octahedra phase Cu2O [5,8,11]. The ZC200, ZC250 material samples (Fig. 1b, Fig. 1c) observed that there were diffraction peaks at the positions of diffraction angle 2θ ≈ 31.5°, 34.2°, 36.04° and 56.4°. This 20 positions corresponds to the (100), (002), (101) and (110) diffraction planes of wurtzite phase ZnO [2,3,5]. The XRD spectrum of the sample ZC120 observed that there was one peak at position 2θ ≈ 36.04° corresponding to the (101) plane of the wurtzite phase ZnO [2,3,5]. In addition, on the XRD spectra of the material samples observed that the diffraction peaks were widened, and no strange diffraction peaks appeared other the diffraction peaks corresponding to the Cu2O and ZnO crystal phases above. The higher the hydrothermal temperature of the samples (120-250) °C, the larger and sharper the diffraction peak intensity observed.
This could be commented that at increasing hydrothermal temperature, the crystallinity of the material sample was better (ZC250 hydrothermal sample at 250 °C). Based on observations from XRD spectra of the samples of ZC120, ZC200 and ZC250 samples above, it can be determined that these fabricated material samples have been crystalline in two crystalline phases of ZnO wurtzite and Cu2O octahedra. The intensity of the peaks corresponding to the ZnO crystalline phase was much smaller than the peak intensity of the Cu2O crystalline phase. This could be explained because the doping of ZnO into Cu2O was small (with a small amount of 20 mol%). Apply the Debye Scherrer equation [2,5,11] to the crystal face with the intensity of the strongest diffraction peak (at 200 plane) to determine the average crystal size of the ZC120, ZC200 and ZC250 material samples. The lattice parameters of the samples were also calculated for two types of ZnO and Cu2O crystalline phase in each material sample [5,9,11]. The results on the average crystal size and lattice parameters of the ZC120, ZC200, ZC250 samples were given in Table 1.

Table 2 The average crystal size, lattice parameters of the ZC120, ZC200 and ZC250 samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Average crystal size, D (nm)</th>
<th>Lattice parameters, a, b, c (Å), V (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZC120</td>
<td>ZnO 20.08</td>
<td>a = b = c = 4.157</td>
</tr>
<tr>
<td></td>
<td>Cu2O</td>
<td>a = b = 3.241, c = 5.188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a = b = c = 4.156</td>
</tr>
<tr>
<td>ZC200</td>
<td>ZnO 20.36</td>
<td>a = b = 3.249, c = 5.198</td>
</tr>
<tr>
<td></td>
<td>Cu2O</td>
<td>a = b = c = 4.150</td>
</tr>
<tr>
<td>ZC250</td>
<td>ZnO 22.50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cu2O</td>
<td>-</td>
</tr>
</tbody>
</table>

From the data in Table 1, it was shown that when the hydrothermal temperature increased from (120-250) °C, the average crystal size also grows larger (20.08-22.50 nm). The diffraction peak intensity of sample was also increased and sharper. This could be explained that when the hydrothermal temperature of the sample was increased, the small crystals were grown and agglomerated into a larger crystal mass. The lattice parameters of the material samples (according to the calculation results in Table 1) were suitable for each type of ZnO crystal and Cu2O crystal of material samples, respectively [5,9,11]. Here it could be seen that, although the average crystal size of the samples was not much different (the largest achieved was 22.50 nm of ZC250 sample, the smallest achieved was (20.08-20.36) nm of ZC120 and ZC200 samples) but it was much smaller than this data of single-phase Cu2O sample (27.8 nm) and single-phase ZnO sample (64.5 nm) (in our previous studies) [20,21]. This is desirable for ZC NCs that have significantly reduced the average crystal size compared with their undoped single-phase materials Cu2O or ZnO.

3.2 Scanning electron microscopy results (SEM)

The scanning electron microscopy results (SEM) of ZC120, ZC200 and ZC250 nanocomposites were shown in Fig. 2. The SEM images of the ZC120, ZC200 and ZC250 samples (Fig. 2) showed that the small crystals were aggregated into larger crystals in two shapes: the coral bulk shape (assigned to the aggregate shape of the ZnO crystals) intertwined with the quasi-spherical bulk shape (assigned to the aggregate shape of the Cu2O crystals) [2,3,5]. The bulk shape of these crystals gradually grew in the material samples when hydrothermal temperature increased from (120-250) °C.
Fig. 2 Scanning electron microscopy (SEM) of the ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples

+ Fig. 3 was the results of the energy dispersive X-ray spectra (EDX) of ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples. The EDX spectra (Fig. 3) of the material samples showed that there were peaks of Cu, Zn and O elements. The higher the hydrothermal temperature of the samples (from the hydrothermal temperature of (120-250) °C), the stronger the peak intensity of Zn element was. The composition and elemental content of the ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples showed that: The elements ratio of Zn:Cu in the ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples was 0.07, 0.09 and 0.093, respectively.

Fig. 3 Energy dispersive X-ray spectra (EDX) of ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples

Therefore, the molar ratios of ZnO:Cu₂O in the ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples were 14 %, 18 % and 18.6 %, respectively. This showed that the number of moles of ZnO in the ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples were lost, but not significantly compared to the number of moles of ZnO which were introduced into the original mixed solution and this was in agreement with references [2-5]. Moreover, at the high hydrothermal temperature of (200-250) °C, the number of moles of ZnO which were hybridized into the Cu₂O achieved more effective (18-18.6) % than at the low hydrothermal temperature of 120 °C (14 %).

3.3 UV-Vis absorption spectra results
The UV-Vis absorption spectra results of ZC₁₂₀, ZC₂₀₀ and ZC₂₅₀ samples were shown in Fig. 4a. The Tauc plot of (αhν)½ vs. absorbed light energy (hν) [2,9,10] of the ZC₁₂₀, ZC₂₀₀, ZC₂₅₀ samples were shown in Fig. 4b, Fig. 4c and Fig. 4d, respectively. On the UV-Vis absorption spectra of the ZC₁₂₀, ZC₂₀₀, ZC₂₅₀ samples (Fig. 4a), it was shown that the samples had two levels of absorption band extension: one was extended in the region wavelength of ~ 400 nm (extension of this absorption edge corresponds to the ZnO material [5-7]), after that the absorbance gradually decreased. Another level was that the absorption edge was extended in the wavelength region of λ ≈ (550-600) nm (extension of this absorption edge corresponds to the Cu₂O material [5,8-11]), after that the absorbance gradually decreased even lower. Thus, the results of UV-Vis absorption spectra showed that there was a widening of absorption edge of two material types as ZnO and Cu₂O. The corresponding Tauc plot calculated as (αhν)½ vs. hν to determine the optical bandgap of the ZC₁₂₀, ZC₂₀₀, ZC₂₅₀ nanocomposite samples (Fig. 4b, Fig. 4c, and Fig. 4d), the optical bandgap energy (Eg) of the ZC₁₂₀, ZC₂₀₀, ZC₂₅₀ samples were determined as Eg ≈ 2.51 eV, 2.52 eV and 2.56 eV, respectively. This Eg value reduced more than that of ZnO single-phase material (Eg ≈ 3.37
eV [6,7]) and larger than that of Cu$_2$O single-phase material (E$_g$ = 2.17 eV [10-11]). This E$_g$ value showed that it was intermediate between the E$_g$ value of ZnO and Cu$_2$O materials. This showed that there was a mutual interaction between the two crystalline phases of ZnO and Cu$_2$O, leading to a positive change the E$_g$ value of the fabricated nanocomposites (that was, these E$_g$ ≈ (2.51-2.56) eV values were all in the excitation region of visible light). These determined E$_g$ values found that there were not much difference at the hydrothermal temperatures of (120-250) °C. But there were a good agreement with the solid UV-vis spectra results in Fig. 4a. When the hydrothermal temperature increased, the width of the absorption edge decreased (which mean that the absorbance shift gradually towards shorter wavelength) and the band gap energy increased. This was one of the desired properties for nanocomposite materials in the research works on these materials. In order to improve the application properties of the material in the visible light excitation region, as well as to enhance the activity of nanocomposites compared to the original single-phase materials [2,3,5].

![Fig. 4](image)

Fig. 4 a- UV-vis absorption spectra of ZC$_{120}$, ZC$_{200}$ and ZC$_{250}$ samples; b- Tauc plot of (ah^2) vs. h of ZC$_{120}$ sample; c- Tauc plot of (ah^2) vs. h of ZC$_{200}$ sample; d- Tauc plot of (ah^2) vs. h of ZC$_{250}$ sample

4 Conclusion

The 20 % ZnO-Cu$_2$O nanocomposite materials (ZC NCs) have been successfully fabricated by hydrothermal method. The structural properties and characteristics of the materials had been investigated at hydrothermal temperatures of (120, 200 and 250) °C. The samples consisted of two crystalline phases of ZnO wurtzite and Cu$_2$O octahedra with the calculated lattice parameters were suitable for each corresponding crystal type present in the material. The average crystal sizes of the ZC$_{120}$, ZC$_{200}$ and ZC$_{250}$ samples increased when hydrothermal temperature increased and the obtained values were 20.08 nm, 20.36 nm and 22.50 nm, respectively. EDX results showed that the percentage of moles of ZnO doped into Cu$_2$O has been lost but not much compared to that of the original mixed solution of 20 %, and the percentage of moles of ZnO doped into Cu$_2$O increased when the hydrothermal temperature increased (specifically, the percentage of moles of ZnO doped into Cu$_2$O was ~ 14 % at 120 °C and this ratio increased to (18-18.6) % at (200-250) °C. The optical bandgap energy (E$_g$) of ZC NCs samples was intermediate between the E$_g$ value of ZnO and Cu$_2$O materials. This E$_g$ was reduced more than the wide bandgap energy of ZnO (~ 3.37 eV), but was larger than the band gap energy of Cu$_2$O (~ 2.17 eV). Specifically, the E$_g$ bandgap energy values of the ZC$_{120}$, ZC$_{200}$ and ZC$_{250}$ samples were (2.51, 2.52 and 2.56) eV, respectively which these E$_g$ values were all in the excitation region of visible light.

Acknowledgement

This work was funded by Hanoi University of Science and Technology (HUST) under project number AGF.2022-04. And authors also thank for the support by Hanoi University of Science and Technology (HUST) under project number CT2022.04.BKA. 05, Science and Technology Project of the Ministry of Education and Training of Vietnam.
References

Khảo sát ảnh hưởng của nhiệt độ thủy nhiệt đến cấu trúc và đặc tính của nanocomposit 20 % ZnO-Cu2O

Nguyễn Thùy Tuyết Mai, Nguyễn Thị Lan, Nguyễn Kim Ngà, Tất Ngọc Dũng, Huỳnh Đăng Chính
Viện Kĩ thuật Hóa học, Đại học Bách Khoa Hà Nội, Hà Nội, Việt Nam
mai.nguyenthituyet@hust.edu.vn

Tóm tắt: ZnO với 20 % mol được lấy ghép với Cu2O để tạo nanocomposit (20 % ZnO-Cu2O (ZC NCs)) chế tạo theo phương pháp thủy nhiệt ở các nhiệt độ khảo sát (120, 200 và 250) °C. Các tính chất cấu trúc và đặc tính của vật liệu được nghiên cứu bởi các phép đo vật lý bao gồm: XRD, SEM, EDX và phổ UV-Vis mẫu rắn. Các kết quả cho thấy các mẫu vật liệu gồm hai pha thủy (ZnO wurzit và Cu2O octahedra) với các thông số ở mạng đã tính toán được phù hợp với mỗi loại tính thể tương ứng của vật liệu. Kích thước tính thể trung bình của các mẫu ZC120, ZC200 và ZC250 tương ứng là (20,08, 20,36 và 22,50) nm. Các tính thể của các mẫu này phát triển lớn hơn khi nhiệt độ thủy nhiệt tăng. Năng lượng khe trống quang (Eg) của các mẫu ZC120, ZC200 và ZC250 tương ứng là (2,51, 2,52 và 2,56) eV. Các giá trị Eg này của các mẫu ZC NCs là trung gian giữa hai loại vật liệu ZnO (Eg ~ 3,37 eV) và Cu2O (Eg ~ 2,17 eV) và đạt được giá trị nằm trong vùng kích thước của ánh sáng khả kiến.

Từ khóa: Đồng(I) oxit, nanocomposit ZnO-Cu2O, hạt nano Cu2O phát tạo ZnO, bức xạ ánh sáng nhìn thấy