Phát hiện nhanh virut gây bệnh dịch tả lợn cổ diện bằng phương pháp kuếch đại dạng nhiệt trung gian vòng lặp

Trần Hồng Điểm, Trần Thị Hậu, Phạm Nguyễn Minh Trang, Phùng Thị Thu Hương
Viện Kĩ thuật Công nghệ cao, Đại học Nguyễn Tất Thành
thdiem@nttu.edu.vn

Tóm tắt

Dịch tả lợn cổ diễn là một trong những bệnh truyền nhiễm quan trọng nhất gây ra bởi virut ở lợn, với những đặc trưng: lây lan mạnh, sốt cao, ti lệ lợn ốm và chết trong vòng dịch cao. Ví vậy, việc phát hiện nhanh và chính xác bệnh là nhiệm vụ quan trọng, có vai trò quyết định trong việc kiểm soát dịch bệnh. Trong nghiên cứu này, phương pháp kuếch đại dạng nhiệt trung gian vòng lặp được sử dụng để phát hiện trình tự đặc trưng tại gen RdRp của CSFV. Quy trình kuếch đại dạng nhiệt trung gian vòng lặp được tối ưu trong nghiên cứu có khả năng phát hiện trình tự mục tiêu dịch tả lợn cổ diễn với giới hạn phát hiện 10^{-6.5} TCID50/mL, phần ứng được thực hiện tại một nhiệt độ cơ ổn định (63 \degree C) trong thời gian 35 phút. Đông thời, phương pháp có thể phát hiện đối với trình tự mục tiêu chì biết từ các mẫu huyết thanh và có thể đọc kết quả nhanh bằng mắt thường thông qua màu sắc của phần ứng, điều này cho thấy khả năng ứng dụng cao của phương pháp đối với phát hiện nhanh bệnh tại chỗ.

1 Đạt văn đề

Dịch tả lợn cổ diễn (classical swine fever – CSF), còn được gọi là dịch tả lợn, là bệnh truyền nhiễm với tỷ lệ tử vong cao ở dân lợn [1], bệnh gây ra bởi virut sốt lợn cổ diễn là một loại virut RNA sợi dương có vò bọc, bộ gen 12,3 kb, thuộc chi Pestivirus, trong họ Flaviviridae [1]. Trong một số trường hợp, tỷ lệ tử vong ở lợn con có thể lên tới 100 % và tử vong thường xảy ra từ ngày thứ năm 5 đến ngày thứ 25 sau khi bị nhiễm. Tại Việt Nam, trường hợp mắc bệnh CSF đầu tiên được báo cáo vào năm 1923-1924 bởi Houdenner [2]. Từ năm 2012-2016, dịch xảy ra trên cả nước lên đến (25,000-30,000) ca mắc và tỷ lệ tử trong dân lợn lên đến 90 % [3-4]. Trong thời gian gần đây, các đợt bùng phát CSFV đã được báo cáo vào năm 2018 và chủ yếu ở miền Bắc Việt Nam. Mặc dù các đợt bùng phát CSF không ảnh hưởng trực tiếp đến sức khỏe con người nhưng có thể gây thiệt hại kinh tế nặng nề [5]. Hiện nay, chẩn đoán bệnh CSF chủ yếu bằng phương pháp PCR phiên mã ngược thẻ oligonucleotide (realtime RT-PCR) với độ nhạy cao so với các kỹ thuật khác như ELISA, xét nghiệm kháng thể huyết quang [6]. Tuy nhiên, yêu cầu về kỹ thuật viên phải được đào tạo bài bản và cần được cụ chuyện dụng vốn chi có ở những nơi có cơ sở vật chất tốt là những hạn chế của phương pháp phát hiện này. Để khắc phục được điểm này, một số nhà nghiên cứu đã đưa ra nhiều kỹ thuật kuếch đại khác dựa trên nguyên lý PCR nhưng chỉ yêu cầu một nhiệt độ phần ứng duy nhất. Kể từ khi được giới thiệu, kuếch đại dạng nhiệt qua trung gian vòng lặp (reverse transcription loop-mediated isothermal amplification – LAMP) đã trở nên phổ biến rộng rãi với không cần sử dụng máy điều nhiệt cũng như khả năng phát hiện nhanh và độ nhạy cao [7]. Ngoài ra, việc sử dụng bồn den sâu doan mới, được thiết kế bằng một công cụ chuyện dụng và bò sung cho sâu vũng khác nhau bên cạnh gen quan tâm, có thể nâng cao tính đặc hiệu của LAMP so với RT-qPCR [7]. Nhieu xét nghiệm LAMP đã được các nhà nghiên cứu thiết lập với nỗ lực phát triển phương pháp phát hiện CSFV nhanh hơn và dễ
tiếp cận hơn tại hiện trường, trong đó có các nghiên cứu đã thành công phát hiện CSFV bằng RT-LAMP trong thời gian 50 phút với độ nhäy 94.7% [8] cũng như nghiên cứu phát hiện CSFV kết hợp giữa RT-LAMP và que thử đặc biệt qua triệt của mặt thường [9].

Nguyễn lợi của LAMP bao gồm hai giai đoạn: giai đoạn tạo mạch vòng và giai đoạn khuếch đại. Trong giai đoạn tạo mạch vòng, các đoạn mới bến trong được thiết kế để bổ sung cho một chuỗi của vùng khuếch đại ở đầu 3' và giống với vùng bến trong của cùng chuỗi ở đầu 5' [7]. Sau đó, các đoạn mới phải trước bới ngoại liên kết với trình tự để kéo dài và do đó thay thế đoạn mới bến trong. Các quá trình lặp diễn ra nhanh đến đến kết quả là cấu trúc vòng ở 2 đầu của chuỗi mới được tổng hợp gợi lại cấu trúc vòng lặp [7]. Ở giai đoạn này, quá trình khuếch đại xảy ra và cả hai mới nổi lên có thể được sử dụng để tạo ra nhiều sản phẩm hơn, đồng thời, mỗi vòng có thể sử dụng để tăng cường khuếch đại sản phẩm [7]. Uy điểm đầu tiên của LAMP là chỉ cần một loại enzyme duy nhất và thứ hai là quá trình khuếch đại có thể được thực hiện ở nhiệt độ không đổi [10]. Những kết quả này làm giảm thời gian cần thiết cho phân ứng và đơn giản hóa quy trình so với các phương pháp khác [10]. Bên cạnh đó, kết quả của LAMP có khả năng quan sát bằng mắt thường qua mẫu sắc sản phẩm của nhiều loại chất nhũ khác nhau [10]. Với tất cả những ưu điểm đó nên, mục đích của nghiên cứu này là áp dụng phương pháp RT-LAMP để phát hiện CSFV, với sự hiện diện của chất chỉ thị pH, kết quả phân ứng có thể được quan sát bằng mắt thường.

2. Vất liệu và phương pháp

2.1 Thiết kế mới RT-LAMP đặc trưng cho CSFV

Ba mẫu trình tự bő gen CSFV được thu nhận từ GenBank và tiến hành xếp giống cơ, phân tích trình tự gen đặc trưng và báo tên cho gen đặc trưng a, gen đặc trưng b và gen đặc trưng c. Theo kết quả phân tích và các nghiên cứu trước đó, vùng trình tự gen RdRp được lựa chọn làm trình tự mục tiêu trong nghiên cứu này do tính ổn định và tính đặc hiệu của gen này. Bộ mẫu LAMP được thiết kế bằng chương trình PrimerExplorer5 dựa trên trình tự CSFV VN91 đã được công bố tại Việt Nam (GenBank No. LC374604.1). Bộ mẫu gen được bao gồm các mẫu F3, B3, FIP, BIP, LoopF và LoopR được kiểm tra các thông số bao gồm PCR insilico từ phần mềm FastPCR. Trình tự mới được thiết kế đặc hiệu và trình tự mục tiêu đông tông hợp (Bảng 1) được tổng hợp bởi Công ty Phù Sa Genomics và được sử dụng cho toàn bộ nghiên cứu này.

<table>
<thead>
<tr>
<th>Bảng 1</th>
<th>Trình tự mới được sử dụng trong nghiên cứu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tên</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>CSF</td>
<td>F3_2</td>
</tr>
<tr>
<td>CSF</td>
<td>B3_2</td>
</tr>
<tr>
<td>CSF</td>
<td>FIP_2</td>
</tr>
<tr>
<td>CSF</td>
<td>BIP_2</td>
</tr>
<tr>
<td>CSF</td>
<td>LF_2</td>
</tr>
<tr>
<td>CSF</td>
<td>LB_2</td>
</tr>
</tbody>
</table>

2.2 Mẫu vi khuẩn và vi rut

Nghiên cứu này sử dụng các chủng vi sinh vật trong Bảng 2 được cung cấp từ Học viện Nông nghiệp Việt Nam và phân lập từ Phòng thí nghiệm Viện Kỹ thuật Công nghệ cao Nguyễn Tất Thành. Trong đó, các mẫu vi rut được nuôi cấy, tác chất bằng kit tách chiết RNA-QIAamp Viral RNA Mini Kit (Qiagen, USA) và được định lượng bằng phương pháp RT-qPCR. Với mẫu vi khuẩn, vi khuẩn được nuôi cấy và tác chất bằng phương pháp CTAB. Mẫu DNA/RNA được lưu trữ tại nhiệt độ –80 ºC để sử dụng cho nghiên cứu.

<table>
<thead>
<tr>
<th>Bảng 2</th>
<th>Chủng vi khuẩn và vi rut dùng trong nghiên cứu</th>
</tr>
</thead>
<tbody>
<tr>
<td>STT</td>
<td>Chủng vi khuẩn</td>
</tr>
<tr>
<td></td>
<td>Mẫu số</td>
</tr>
<tr>
<td></td>
<td>Nguyên gốc</td>
</tr>
<tr>
<td></td>
<td>Số lượng</td>
</tr>
<tr>
<td>Samonella enterica</td>
<td>Khuẩn lắc</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Khuẩn lắc</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Khuẩn lắc</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Khuẩn lắc</td>
</tr>
<tr>
<td>Vibrio paraohaemolyticus</td>
<td>Khuôn lạc</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CSFV</td>
<td>RNA</td>
</tr>
<tr>
<td>Vi rút tảo lơn châu Phi (ASFV)</td>
<td>RNA</td>
</tr>
<tr>
<td>Vi rút tảo lơn có điện (CSFV)</td>
<td>RNA</td>
</tr>
<tr>
<td>Vi rút tiểu chây cấp ở lơn (PEDV)</td>
<td>RNA</td>
</tr>
<tr>
<td>Vi rút vi khuẩn truyền nhiễm trên lơn (TGEV)</td>
<td>RNA</td>
</tr>
</tbody>
</table>

2.3 Thiết lập phản ứng RT- LAMP
Phân ứng RT- LAMP có thể tích 15 μL bao gồm 0,3 μM mỗi moi F3, B3; 2,4 μM mỗi moi FIP, BIP; 0,6 μM mỗi moi LoopF, LoopR, 5 μL mẫu; 7,5 μL WarmStart® Colorimetric LAMP 2X Master Mix (DNA & RNA) (NEB, UK). Phần ứng được thực hiện trong máy ấn nhiệt khô Biosa Bio TDB-100. Kết quả phần ứng được quan sát bằng sự thay đổi màu sắc phản ứng và thường nhuộmhydration quang SYBR I (Thermo Fisher Scientific, USA).

2.4 Tói ưu điều kiện cho phản ứng RT- LAMP
Việc xác định thời gian phản ứng được thực hiện với các phần ứng các RT- LAMP có thể tích 15 μL bao gồm 10^4 TCID₅₀/mL mạch khuôn PRRSV, 7,5 μL LAMP mastermix, mỗi và nước sinh học phần từ được ưu tích (5-55) phút với khoảng cách 5 phút giữa mỗi lần ủ cho mỗi phần ứng trong 60 phút. Thời gian tối ưu của phản ứng sẽ được bằng cách khảo sát nhiệt độ phản ứng. Theo đó, các phần ứng được đặt tại nhiệt độ (56-67) °C, cách nhau 1 °C, trong thời gian 60 phút. Kết quả khảo sát được ghi nhận bằng màu sắc phản ứng và nhuộm hydration quang.

2.5 Khảo sát giới hạn phát hiện và tính đặc hiệu của phản ứng RT- LAMP
Mẫu RNA được tách chuyến có nồng độ 10^{5.5} TCID₅₀/mL được pha loãng theo bậc 10 về các nồng độ cuối cùng (10^{4.5-10}) TCID₅₀/mL và tiến hành thử nghiệm phản ứng với các điều kiện tối ưu. Tính đặc hiệu của bộ đổi được khảo sát bằng phản ứng RT- LAMP đã được tối ưu với các chủng vi rút gây bệnh trên lơn gắn guistra CSFV, cũng với các loại vi khuẩn thường xuất hiện trong môi trường chung trải (Bảng 2). Sàn phẩm được phân tích bằng mau sắc sau phản ứng và nhuộm SYBR I.

3 Kết quả
3.1 Kết quả kiểm tra môi và các thành phần phản ứng RT- LAMP
Bộ đổi RT- LAMP được thiết kế đặc hiệu cho CSFV và các thành phần phản ứng được kiểm tra bằng phản ứng RT- LAMP với mạch khuôn dạng tổng hợp và RNA bộ gen CSFV đã được tinh sạch. Theo đó, phản ứng được ủ tại nhiệt độ 65 °C trong 45 phút, phản ứng được thực hiện với mạch khuôn DNA dạng tổng hợp (Hình 1A), mạch khuôn RNA (Hình 1B) và kết quả được quan sát bằng màu sắc và thường nhuộm hydration quang SYBR I. Kết quả tại Hình 1 cho thấy, các phản ứng chứng minh quá trình tự RdRp đang tổng hợp hoặc RNA CSFV tính sạch đều cho kết quả dương tính với sự thay đổi màu sắc từ hồng sang vàng, đồng thời các phản ứng âm giả nguyên mẫu hồng ban đầu. Phương pháp quan sát bằnghydration quang cho kết quả tương tự với phản ứng chứng minh phân phát sáng dưới ảnh sáng 460 nm trong khi đó phản ứng chứng minh âm chỉ thế hiện tinh hiện nhiên. Điều này chứng minh rằng, bộ đổi RT- LAMP được thiết kế có khả năng khuếch đại trình tự mục tiêu, các thành phần phản ứng phù hợp và được sử dụng cho các phản ứng tiếp theo.

Hình 1 Kết quả kiểm tra môi RT- LAMP thiết kế đặc trưng cho CSFV.

3.2 Kết quả tối ưu nhiệt độ và thời gian phản ứng
Sử tối ưu nhiệt độ cho RT- LAMP được thực hiện với khoảng thời gian (15-75) phút phản ứng với các mức thời gian cách nhau 5 phút. Kết quả khảo sát được thể hiện tại Hình 2 cho thấy, phản ứng có kết quả rõ nét về sự thay đổi màu sắc phản ứng và sự phát tén hiệu hydration quang của SYBR I sau thời gian (35-75) phút phản ứng. Vi thế, thời gian 35 phút được lựa chọn làm thời gian phản ứng tối ưu cho phản ứng RT- LAMP phát hiện CSFV trong nghiên cứu này.
Sử tối ưu nhiệt độ phân ứng được khảo sát trong khoảng nhiệt độ (55-68 °C), với các mức nhiệt độ tăng dần 1 °C, tất cả các phân ứng đều được thực hiện trong thời gian 35 phút đề tối ưu trước đó. Kết quả tại Hinh 3 cho thấy, sau 35 phút phân ứng, phân ứng cho tín hiệu huỳnh quang từ nhiệt độ 58 °C. Tuy nhiên, từ mức nhiệt độ (60-68) °C, kết quả phân ứng có thể quan sát trực tiếp bằng màu sắc phân ứng, trong khi đó tại nhiệt độ 63 °C, phân ứng cho kết quả rõ nét nhất về màu sắc, vì thế 63 °C được lựa chọn là nhiệt độ tối ưu và sử dụng cho các phân ứng khảo sát tiếp theo.

Hình 3 Kết quả khảo sát nhiệt độ tối ưu cho phân ứng RT-LAMP.

3.3 Giới hạn phát hiện của phân ứng RT-LAMP với RNA của CSFV đã được tinh chế
Giới hạn phát hiện của phương pháp RT-LAMP được khảo sát từ khoảng nồng độ RNA (10^{4.5}-10^{9}) TCID_{50}/mL được tách chiết từ mẫu vi rút CSFV. Phân ứng được thực hiện trong nhiệt độ và thời gian được tối ưu trước đó. Kết quả tại Hình 4 cho thấy, phân ứng RT-LAMP tối ưu có thể phát hiện mẫu RNA có nồng độ thấp nhất là 10^{0.5} TCID_{50}/mL, kết quả tương đồng khi quan sát bằng cả màu sắc và thuốc nhuộm SYBR. Điều này thể hiện ưu thế của phân ứng trong việc phát hiện các mẫu RNA bệnh phẩm có nồng độ thấp với các cả thể nhiễm đang trong thời gian ủ bệnh.

Hình 4 Kết quả khảo sát giới hạn phát hiện của phương pháp RT-LAMP đối với RNA bộ gen của CSFV.
3.4 Tính đặc hiệu của bộ mới RT-LAMP
Trong nghiên cứu này, 10 chủng vi khuẩn và vi rút khác nhau được sử dụng cho phân ứng khảo sát tính đặc hiệu của bộ mới RT-LAMP đã được thiết kế đặc trưng cho gen RdRp và sử dụng cho toàn bộ nghiên cứu. Trong đó có có 4 mẫu RNA/DNA từ vi rút cùng gây bệnh trên lơn với các triệu chứng tương tự như bệnh tả lơn có đién gây ra bởi CSFV và 6 mẫu DNA vi khuẩn rất phổ biến trong môi trường chuồng trại. Kết quả cho thấy, phân ứng RT-LAMP với bộ mới thiết kế khi khuếch đại khi RNA mục tiêu CSFV có trong phân ứng (Hình 5). Vì vậy, bộ mới lựa chọn thực hiện phương pháp RT-LAMP đã được tối ưu trong nghiên cứu này có tính chuyến biết cao cho CSFV.

Hình 5 Kết quả khảo sát tính đặc hiệu của bộ mới được thiết kế.

3.6 RT-LAMP với mẫu RNA tách chiết từ mẫu bệnh phẩm
Để khảo sát khả năng hoạt động của quy trình RT-LAMP đã tối ưu, trong nghiên cứu này 13 mẫu RNA tách chiết từ 13 mẫu bệnh phẩm khác nhau đã được dùng để khảo sát. Theo đó các mẫu bệnh phẩm được thu nhận, tách chiết RNA và tiến hành phân tích kiểm chứng bằng RT-qPCR, kết quả cho thấy có 10 mẫu dương tính với các nồng độ CSFV khác nhau (Hình 6, mẫu 1 đến mẫu 10) và 3 mẫu âm tính với CSFV (Hình 6, mẫu 11 đến mẫu 13). Sau đó, 13 mẫu RNA này được dùng làm mạch khửon cho RT-LAMP. Kết quả của phân ứng RT-LAMP đã được tối ưu trong nghiên cứu cho thấy khả năng phát hiện RNA bộ gen của CSFV trên 10 mẫu RNA có nồng độ khác nhau, trong khi đó 3 mẫu huyết thanh còn lại không chứa vi rút cho kết quả âm tính. Kết quả đồng nhất giữa mẫu sác và soi thuộc nhuộm huyết quang. Điều này cho thấy tính ứng dụng cao của phương pháp RT-LAMP đã được tối ưu trong nghiên cứu này và có khả năng ứng dụng cao đối với mẫu bệnh phẩm, vốn có nhiều cách biến viêm trong động.
4 Kết luận

Bệnh tả lợn có diến vận lồn là một trong những bệnh phổ biến trên lợn, bệnh có thể xuất hiện, lấy lan nhanh chóng, gây chết hàng loạt cả thể lợn và làm tổn thất đáng kể cho ngành chăn nuôi [11]. Các phương pháp phát hiện bệnh này phụ thuộc vào các dấu hiệu lâm sàng và phương pháp sinh học phân tử như RT-qPCR [6]. Trong khi các triệu chứng lâm sàng của bệnh tả lợn có diến thường dễ bị nhầm lẫn với các bệnh khác cũng xuất hiện trên lợn thì RT-qPCR lại đổi hỏi thiết bị chuyên dụng và đặt tiền [6]. Vì thế, quy trình RT-LAMP đã được thực hiện và tối ưu cho việc phát hiện CSFV. Theo đó, bộ 6 mồi RT-LAMP đặc hiệu cho CSFV được thiết kế và khổ soát, RT-LAMP có thể phát hiện thành công RNA của CSFV trong thời gian 35 phút tại nhiệt độ 63 ºC. Kết quả của phần ứng có thể quan sát trực tiếp bằng mắt thường qua màu sắc phản ứng với giới hạn phát hiện thấp nhất tại 10³ TCID₅₀/mL, có giá trị ngang bằng với các kit RT-PCR phát hiện CSFV trên thị trường. Đông thời, bộ mồi RT-LAMP đã sử dụng có tính chuẩn biệt cao với các loại vi rút gần gũi với CSFV và các vi khuẩn phổ biến diến trong môi trường.

Tóm lại, RT-LAMP là một phương pháp đơn giản, nhanh và chính xác cho việc phát hiện CSFV, phương pháp này không yêu cầu thiết bị đặt tiền và có khả năng ứng dụng cho việc phát hiện các quy trình phát hiện bệnh tại chỗ, nay khu vực chiropr.

Lời cảm ơn
Nghiên cứu được tài trợ bởi Quỹ phát triển Khoa học và Công nghệ – Đại học Nguyễn Tất Thành, mã đề tài 2022.01.132/KHCN.

Tài liệu tham khảo
Rapid detection of classical swine fever virus (CSFV) by reverse-transcription loop-mediated isothermal amplification method (RT-LAMP)

Diem Hong Tran, Hau Thi Tran, Trang Minh Pham Nguyen, Huong Thi Thu Phung
NTT Hi-tech Institute, Nguyen Tat Thanh University
thdiem@ntt.edu.vn

Abstract Classic swine fever (CSF) is one of the most serious infectious diseases in pigs, caused by CSFV virus, and has the following characteristics: widespread spread, high fever, and a high swine sickness and death rate in the area. As a result, rapid and accurate disease detection is a crucial challenge in disease control. The RT-LAMP – an isothermal amplification method was used in this study to detect the specific sequence at the CSFV RdRp gene. The optimized RT-LAMP procedure in this study could detect the CSFV target sequence with a detection limit of \(10^{-0.5}\) TCID\(_{50}\)/mL; the reaction was performed at a constant temperature (63 ºC) for 35 minutes. The naked eye could quickly read the results through the color of the reaction, which indicates that this method has a high applicability for the rapid detection of diseases at the point-of-care setting.

Keywords RT-LAMP, CSF, CSFV, colorimetric, RdRp