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Abstract  

The primary objective of this paper is to efficiently predict the dynamic response of 

functionally graded plates using LightGBM – a light gradient boosting machine, 

without reliance on supplementary analysis tools. To obtain the optimal LightGBM 

model, a dataset comprising 1,000 pairs of input and output is generated through 

iterations using a combination of isogeometric analysis (IGA) and third-order shear 

deformation plate theory (TSDT). In this model, the input is represented by a power 

index which governs the material distribution of the plate, and the output comprises 200 

values illustrating deflection over time. To demonstrate the effectiveness of LightGBM 

in terms of accuracy and computational time, the results obtained by the proposed model 

are compared to those achieved with the optimal ANN, XGBoost models, and IGA. 
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1 Introduction 

Functionally Graded Material (FGM), a category of 

smart materials, is typically comprised of two main 

constituents: metal and ceramic. These materials 

exhibit various properties in different directions. The 

outstanding properties of FGMs result from the metal's 

remarkable fracture toughness and the ceramic's 

capacity to withstand high temperatures. FGMs are 

essential for resolving stress-related problems in 

laminated composite layers and successfully removing 

undesired stress discontinuities. Therefore, FGMs have 

found increasing use in a variety of industries, such as 

biology [1], aircraft engineering [2], and nuclear power 

plants [3].   

Dynamic analysis issues related to functionally graded 

plates are currently garnering significant attention from 

researchers worldwide, owing to their remarkable 

features and diverse applications across various fields. 

For instance, the scaled boundary finite element 

method (SBFEM) was used to study the free vibration 

and transient dynamic behaviors of sandwich plates 

made of functionally graded material (FGM). The 

study demonstrates the method's efficiency in 

capturing free vibration and transient behaviors with 

high accuracy, reducing computational cost, and 

ensuring agreement with established solutions [4]. 

SBFEM has been extended to investigate the effects of 

fully coupled transient thermoelectricity in the 

modeling of fractures in functionally graded materials 

(FGMs) [5]. The nonlinear transient of porous FGM 

plates under step blast loading was analyzed using the 

finite element method. The obtained results were 

compared with benchmark solutions, and the effects of 

parameters such as power index, porosity parameter, 

and side-to-thickness ratio on the transient response of 

FGM plates subjected to step blast loads were 

examined [6]. Artificial neural networks (ANN) and 
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extreme gradient boosting (XGBoost) were utilized to 

rapidly predict the dynamic behavior of functionally 

graded plates [7]. Additionally, other investigations are 

documented in references [8, 9]. In the aforementioned 

studies, the traditional analytical methods were 

predominantly employed, leading to time-consuming 

and computationally expensive processes. Thus, this 

study introduces the light gradient boosting machine 

(LightGBM) as an efficient approach for dynamic 

analysis on functionally graded plates, aiming to reduce 

computational time without compromising accuracy.  

Light gradient boosting machine (LightGBM) is a 

machine learning framework developed by Microsoft 

[10]. It belongs to the class of gradient boosting 

algorithms which are used for supervised learning tasks 

such as classification and regression. LightGBM is 

known for its speed, efficiency, and ability to handle 

large-scale datasets efficiently. As a result, LightGBM 

is applied in various fields [11-16]. For instance, 

LightGBM is used to predict the financing risk profile 

of 186 businesses to solve the persistent challenges of 

difficult and expensive financing for domestic and 

foreign enterprises [11]. In addition, LightGBM is used 

to identify the intrusive activities in the IoT network. 

The simulation results demonstrate that the proposed 

approach outperforms other evaluated methods, thus 

establishing its effectiveness and robustness for 

intrusion detection in an IoT environment [15]. 

LightGBM was combined with hyperparameter 

optimization algorithms such as Random, Grid, CMA-

ES, and TPE to develop four hybrid models aimed at 

improving the accuracy of heating and cooling load 

predictions in residential buildings. Among these 

models, the TPE-LightGBM combination 

demonstrated the highest prediction accuracy [16]. 

Nevertheless, there has been no exploration in 

assessing the efficacy of LightGBM in forecasting the 

dynamic response of functionally graded plates. 

To create a training dataset for LightGBM, 

isogeometric analysis (IGA) is proposed, utilizing non-

uniform rational B-splines (NURBS) to represent both 

CAD geometry and FEA solution fields. IGA preserves 

exact geometry even at coarse discretization levels, 

effectively reducing degrees of freedom (DOFs) for 

high-order elements. Applied in diverse engineering 

fields, IGA has been demonstrated for analyzing 

functionally graded plates [17], efficient shell analysis 

of complex multi-patch structures [18], and others [19-

23]. 

The precision of isogeometric analysis (IGA) has been 

verified through a comparison of results with existing 

literature [7]. In this study, IGA is employed to 

generate a dataset comprising 1,000 pairs, each of 

which consists of a power index controlling the plate's 

material distribution as input and output with 200 

deflection values over time. This dataset is employed 

in training ANN, XGBoost, and LightGBM to 

determine optimal weights, thus enabling direct output 

prediction from input without additional analysis tools. 

Additionally, an exploration of parameter effects on 

accuracy and computational time is conducted to 

identify optimal models. The results of the LightGBM 

model are compared with those of IGA, ANN, and 

XGBoost to validate the effectiveness and robustness 

of LightGBM. 

2 Methodology  

2.1 Isogeometric analysis of functionally graded plates 

2.1.1 Plate formulation 

The displacement field of any point in the plate is 

described in this study using the third-order shear 

deformation plate theory (TSDT), as shown below [24] 
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where x  and y  stand for the angular deformations; u

, v  and w  indicate the spatial displacements. The 

descriptions of  f z  and  g z  are as follows. 
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The thickness of the plates is indicated by h , while the 

coordinate in the thickness direction is represented by 

z . 

The strain-displacement relations can be explained as 

follows in accordance with the theory of infinitesimal 

elasticity: 
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The linear elastic constitutive equation is given by 

11 12 ,xx xx yyQ Q     (8) 

21 22 ,yy xx yyQ Q     (9) 

44 55 66;  ;  ,xy xy yz xy xz xyQ Q Q         (10) 

     whereby 
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where  E E z  denotes the Poisson's ratio and 

 z   the Young's modulus, respectively. These 

variables, which are defined as follows, are considered 

to fluctuate along with the mass density    across the 

thickness of the plate in this study. 

  ,c c m mE z E V E V   (12) 

  ,c c m mz V V     (13) 

  ,c c m mz V V     (14) 

where 1c mV V   and c and m  stand for the 

constituents of ceramic and metal, respectively;  cV z  

and  mV z  are the volume fractions of ceramic and 

metal, respectively. 

 The equation of motion for the following problem 

can be stated as follows by using Hamilton's principle 

[25]: 
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where eW  stands for the work performed by outside 

forces, U  for elastic energy, and T  for kinetic energy. 

These terms' variational form formulations are given by 

,
i i

V

T u u dV     (16) 

,
ij ij

V

U dV     (17) 

ˆ ,
e i i

W t u d 


    (18) 

When ît  indicates the external loads operating on area 

 , V  is the plate's volume, and the dot superscript 

stands for the derivative with regard to time t . 

Equations (3)-(7) and (16)-(18) can be used in place of 

(15) to rewrite the equation of motion, along with a few 

other modifications: 

 ˆˆ ˆ ,T Td d q t wd  

  

     ε Dε u mu  (19) 

where   stands for the plate's reference plane and 

 q t , which is the distributed load applied to the plate's 

upper surface, is dependent on the time t  variable. For 

detailed information regarding the quantities specified 

in the preceding equation, we refer readers to [26]. 

2.1.2  Isogeometric analysis 

The IGA approach is used in this study to model the 

plate [27]. The NURBS basis function  ,
, ,p q

i jR    is 

used to discretize the equation of motion. The eth 

NURBS element's displacement, u , is provided by 

 
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where the variables for displacement associated with 

the ith control point are denoted by 

 
T

i i i xi yi iu v w d , and  
T

x yu v w u  

represents the displacement vector. 

Equation (19) can be substituted with equation (20), 

resulting in the following new equation for the system: 

 ,t Md Kd q  (21) 

where  q t  denotes the load vector and M and K stand 

for the mass and stiffness matrices, respectively. The 

readers may find further details in [26]. 

In this analysis, only structural damping of the plate is 

considered. The Rayleigh damping method is used to 

simulate the damping, and the proportional damping 

matrix is defined by 

0 1 ,a a C M K  (22) 

in which 
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where 1  and 2  are the natural frequencies of the first 

and second vibration modes, respectively, and   is the 

damping ratio of the first and second vibration modes 

[28]. 

The system's equation in (21) with the damping matrix 

included is rewritten as follows: 

 .t  Md Cd Kd q  (24) 

The Newmark technique is applied to solve the time-

dependent problem as given in  (24) [29]. The overall 

process for resolving the temporary issue is provided in 

[26]. 

2.2 The light gradient boosting machine model 

The LightGBM algorithm, which is a relatively recent 

algorithm, is explained in length in this section. 

LightGBM and a unique GBDT (Gradient Boosting 

Decision Tree) algorithm have been used in a wide 

range of data mining applications, including ordering, 

regression, and classification [10]. Two innovative 

methods are included in the LightGBM algorithm: 

exclusive feature bundling and gradient-based one-side 

sampling, respectively. 

Considering the supervised training set 
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expected value of a particular loss function   ,L y f x  

by determining an approximation  f̂ x  to a particular 

function  *f x  as follows: 

  ,
ˆ argmin ,y X

f
f E L y f x  (25) 

The final model is approximated by LightGBM by 

integrating multiple T regression trees  
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The expression  qw x ,  1,2, ,q J  represents the 

regression trees, where J represents the number of 

leaves, q  represents the tree's decision rules, and w  is 

a vector representing the sample weight of leaf nodes. 

Thus, at step t , LightGBM would receive the following 

additive training: 
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Newton's approach is used in LightGBM to quickly 

approximate the goal function. The following 

transformation can be applied to the formulation after 

the constant term in (27) is removed for simplicity: 
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where the loss function's first- and second-order 

gradient statistics are represented by the symbols ig  

and ih . (28) could be changed as follows, where jI  

represents the sample set of leaf j . 
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The ideal leaf weight scores of every leaf node jw  and 

the extreme value of K  for a given tree structure  q x  

could be determined in the manner described below: 
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where the quality of the tree structure q is measured by 

a scoring function denoted as T
 . Lastly, following the 

split addition, the objective function is: 
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 (32) 

where the left and right branches' respective sample 

sets are denoted by LI  and RI . LightGBM is an 

excellent way to process large-scale data and features 

because while typical GBDT-based techniques like 

XGBoost and GBDT grow trees horizontally, 

LightGBM would develop the tree vertically. 

In general, the hyper-parameters would have a big 

impact on forecasting accuracy. Therefore, we need to 

ascertain the number and the range of variation of 

LightGBM's hyper-parameter before utilizing it. Table 

1 displays the key LightGBM parameters. 
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            Table 1  The primary LightGBM model hyperparameters adjusted in this investigation 

Hyperparameters Explanation and application Default 

learning_rate 
Regulate the pace of shrinking; A smaller value 

corresponds to a shorter iteration step. 
0.1 

Max_depth Limit a tree model's maximum depth case-based 

num_interations The quantity of trees (iterations) 100 

num_leaves Limit the decision tree's maximum number of leaves. 31 

num_bin 

Regulate the maximum number of bins (data intervals) 

when converting the input layer parameter dataset into 

a histogram. 

255 

n_estimators 
Number of trees. Underfitting will result from 

n_estimators being too small.  
100 

3 Results and discussions 

In the previous study by the author, the accuracy of 

dynamic analysis of isotropic square plates using IGA 

and TSDT was verified [7]. In the present study, 

LightGBM has been utilized instead of IGA to examine 

dynamic response of the Al2O3/Al square plate (as 

shown in Figure 1) with 20h a  and the damping 

ratio   of 0.05 quickly. The results obtained from the 

present method will be contrasted with those of the 

optimal ANN and XGBoost models. Material 

properties of Al2O3/Al plate are given as follows: 
3

2 3

3

ceramic Al O :  380 , 0.3, 3800kg m

metal Al :  70 , 0.3, 2707kg m

c c c

m m m
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Figure 1  The functionally graded plate model 

 

The following function governs the distribution of the 

ceramic composition in the Al2O3/Al plate along the 

thickness of the plate: 

1

2

zn

c

z
V

h

 
  
 

 
(33) 

where cV  stands for the ceramic volume fraction, zn  

indicates the power index on the z-axis, and h 

represents the plate thickness. 

A sudden uniformly distributed dynamic load with 
8 2

0 0.5 10 N mq     is applied to the plate under the 

CCCC boundary condition, which is depicted as 

follows: 
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(34) 

IGA generated 1000 data pairs, which were used to 

execute the training process in ANN, XGBoost, and 

LightGBM to obtain optimal weights in models. 

Specifically, zn  is regarded as an input with values 

between 0 and 10, and the output consists of 200 

deflections versus time values that can be explained as 

follows: 
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3 3
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(35) 

These 1,000 data pairs are splitted into two groups: the 

first group contains 900 pairs that are used in the 

training phase, and the other contains 100 pairs that are 

used in the testing phase. Optimal models for ANN and 

XGBoost were determined after investigating the 

influence of various parameters on model accuracy and 

computational time presented in the authors’ preceding 

study [7]. The aim of this study is to select the optimal 

LightGBM model by examining the impact of 



  

 

 
Đại học Nguyễn Tất Thành    

17 Tạp chí Khoa học & Công nghệ Vol 7, No 2 

parameters such as the number of trees (n_estimators), 

maximum tree depth (max_depth), and learning rate 

(learning_rate) on the effectiveness of LightGBM. 

Subsequently, a comparation is conducted to assess the 

accuracy and computational efficiency of the optimal 

ANN, XGBoost, and LightGBM models.  

The training process is conducted through Python 3.7 

on a laptop featuring an Intel® CoreTM i7-8550U CPU 

@ 1.80 GHz 2.00 GHz, 12.0 GB RAM, and operating 

on Windows 11 with a 64-bit system. 

The performance of the ANN, XGBoost, and 

LightGBM models was assessed in terms of mean 

square error (MSE), mean absolute percentage error 

(MAPE), and computational time. In the LightGBM 

model, the parameter of the number of trees 

(n_estimators) with values selected in the set {10, 30, 

50, 100, 150, 200, 500 and 1,000} is investigated first. 

The remaining parameters are set to default as in the 

system. The gained results are shown in Table 2. 

Table 2  The effect of the number of trees on the effectiveness of the training and testing processes in LightGBM 

n_estimators 10 30 50 100 150 200 500 1,000 

MSE 
Training 2.21E-04  4.49E-06  1.19E-06 1.11E-06 1.10E-06 1.10E-06  1.09E-06  1.09E-06 

Testing 2.27E-04  3.64E-06  5.30E-07 4.78E-07 4.70E-07 4.67E-07  4.64E-07  4.66E-07 

MAPE 
Training 2.0158 0.2543 0.0684 0.0551 0.0547 0.0544 0.0540 0.0540 

Testing 2.0269 0.2489 0.0688 0.0541 0.0536 0.0533 0.0529 0.0529 

Time (second) 2.0269 3.5708 4.5090 7.7034 11.0322 15.5520 46.8837 99.3168 

As can be seen from the table, LightGBM with n_estimators of 100 produces a trade-off between computational 

time and accuracy. Specifically, it takes 7.7 seconds, and with an accuracy rate of 99.9449 % for training and 

99.9459 % for testing. Therefore, the model with n_estimators of 100 is utilized in the next investigation. 

Subsequently, the max depth of the trees (max_depth) is examined and gained results are indicated in Table 3. 

Table 3  The effect of the max depth of the trees on the effectiveness of the training and testing processes in 

LightGBM 

max_depth 1 2 3 5 7 10 

MSE 
Training 8.33E-06 1.43E-06 1.16E-06 1.11E-06 1.11E-06 1.11E+00 

Testing 7.95E-06 8.47E-07 5.47E-07 4.82E-07 4.79E-07 4.78E-07 

MAPE 
Training 0.2764 0.1008 0.0719 0.0566 0.0552 0.0551 

Testing 0.2731 0.1007 0.0703 0.0552 0.0542 0.0541 

Time (second) 2.3131 2.5471 3.3438 5.5624 7.2807 7.7408 

The table shows that when the tree reaches a depth of 5, the model accuracy stabilizes, and computational time 

increases as the max depth of the tree increases. As a result, the LightGBM model with n_estimators of 100 and 

max_depth of 5 is used for determining the learning rate. Table 4 shows the effect of the learning rate on the 

accuracy and computational time of the LightGBM model.  

      Table 4  The effect of the learning rate on the effectiveness of the training and testing processes in LightGBM 

learning_rate 0.01 0.05 0.1 0.3 0.5 0.7 1 

MSE 
Training 2.44E-04 1.20E-06 1.11E-06 1.14E-06 1.17E-06 1.14E-06 1.11E-06 

Testing 2.50E-04 5.41E-07 4.82E-07 5.08E-07 5.54E-07 5.21E-07 4.83E-07 

         

MAPE 
Training 2.1184 0.0719 0.0566 0.0686 0.0747 0.0691 0.060743 

Testing 2.1303 0.0723 0.0552 0.0673 0.0744 0.0685 0.059671 

         

Time (second) 6.3431 6.5397 5.7967 4.4376 3.9618 4.3115 5.71561 



 

 

 
Đại học Nguyễn Tất Thành    

Tạp chí Khoa học & Công nghệ Vol 7, No 2 
 

18 

Table 4 demonstrates that the LightGBM model, with 

a learning rate of 0.1 yields optimal results, achieving 

5.7967 seconds for training with an accuracy of 

99.9434 %, and 99.9448 % for testing. Consequently, 

the LightGBM model with 100 trees, a maximum depth 

tree of 5, and a learning rate of 0.1 is the most effective 

model in this study for predicting the dynamic response 

of FG plates. Figure 2 displays the results that this 

model accurately predicted, with a rate of over 99.9 % 

in comparison with results obtained by IGA. 

The parameters in the two models, ANN and XGBoost, 

were also examined in previous studies [7] 

to determine which model architecture was most 

effective in predicting the dynamic response of FG 

plates. Two optimal models were identified: XGBoost 

with max_depth of 5, n_estimators of 200, and a 

learning rate of 0.1; and the ANN model with Adam 

optimizer, ReLU function, 3,000 epochs, two hidden 

layers, and 50 nodes at each. Results obtained by the 

LightGBM are compared to those of the optimal ANN 

and XGBoost models in Table 5. 

 

 
Figure 2  Dynamic response of the Al2O3/Al plate 

predicted by using LightGBM 

Table 5  A comparison between ANN, XGBoost, and LightGBM in 

terms of the accuracy and computational time 

Model ANN XGBoost LightGBM 

MSE 
Training 1.63E-05 8.89E-08 1.11E-06 

Testing 1.48E-05 2.57E-07 4.82E-07 

MAPE 
Training 0.3724 0.0294 0.0566 

Testing 0.5977 0.0526 0.0552 

Time (second) 46.1856 15.6894 5.7967 

As indicated in the table, the MAPE values for both the 

training and testing datasets obtained with LightGBM 

are nearly identical. Furthermore, LightGBM not only 

ensures accurate prediction of dynamic responses for 

the FG plate but also significantly reduces 

computational time compared to ANN and XGBoost. 

4 Conclusion and future research 

This paper successfully introduces the development of 

LightGBM for modeling the dynamic response of 

functionally graded plates with various material 

properties, along the thickness. The study employs a 

dataset with the power index as the single input, and 200 

output values representing deflection over time. 

Utilizing this dataset, this study identifies the optimum 

LightGBM architecture for plate behavior prediction 

without requiring additional analytical tools. 

Additionally, an investigation has been conducted into 

the impact of parameters on model accuracy and 

computational time to identify the most effective 

configurations. The accuracy of the LightGBM model is 

verified through a comparison of its results with those 

derived from IGA. From the obtained results, it is 

evident that LightGBM not only achieves over 99.9 % 

of accuracy but also significantly reduces 

computational time compared to ANN and XGBoost. 

The current methodology holds the potentials for 

application to more intricate engineering challenges, 

such as multi-directional functionally graded plates or 

shells. Furthermore, optimization aspects merit further 

investigation.
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Tóm tắt  Mục tiêu chính của bài viết này là để dự đoán một cách hiệu quả đáp ứng động lực học của các tấm cơ 

tính biến thiên bằng cách sử dụng thuật toán tăng cường độ dốc nhẹ (LightGBM) mà không phụ thuộc vào bất kỳ 

công cụ phân tích nào. Để thu được mô hình LightGBM tối ưu, một tập dữ liệu bao gồm 1 000 cặp dữ liệu đầu vào 

và đầu ra được tạo ra thông qua các lần lặp bằng cách sử dụng kết hợp phân tích đẳng hình học (IGA) và lý thuyết 

tấm biến dạng cắt bậc ba (TSDT). Trong mô hình này, đầu vào là chỉ số mũ, nó chi phối sự phân bố vật liệu của 

tấm, và đầu ra bao gồm 200 giá trị minh họa chuyển vị theo thời gian. Để chứng minh tính hiệu quả của mô hình 

LightGBM về độ chính xác và thời gian tính toán, kết quả thu được từ mô hình đề xuất được so sánh với các kết 

quả đạt được bởi các mô hình tối ưu ANN, XGBoost và IGA. 

Từ khóa  tấm cơ tính biến thiên; đáp ứng động lực học; thuật toán tăng cường độ dốc nhẹ; phân tích đẳng hình 

học; mạng thần kinh nhân tạo; thuật toán tăng cường độ dốc cực cao. 

  


