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Abstract

The rapid growth of multimedia communication applications drives the demand for Received 20/11/2024
network communication, creating significant pressure on network systems and  Accepted  09/02/2025
requiring effective queue management solutions to maintain performance and minimize Published  28/02/2025
congestion. With fluctuating traffic loads and increasing demands for Quality of

Service, traditional queue management methods fail to meet the requirements. To

resolve the challenge, the paper proposes the enhanced DAIM-RED model. DAIM-

RED offers a comprehensive solution, leveraging adaptive techniques to adjust min-

max thresholds, reduce packet drop probability, and optimize queue management

efficiency in network routers. The model incorporates AIM-RED, an adaptive method ~ Keywords

capable of automatically updating the model and tuning parameters based on network
data, along with Deep Q-Network, which predicts queue overflow conditions and
optimizes throughput. DAIM-RED demonstrates superior network performance
compared to models combining AIM-RED with Convolutional Neural Networks and
Long Short-Term Memory. The model not only stabilizes queues but also minimizes ~ congestion control,

gueue management,
Deep Q-Network,
DAIM-RED,

congestion and ensures Quality of Service in increasingly complex network network performance
environments.
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1 Introduction user experience, especially in real-time applications

involvi ki I 2]. Th f
Nowadays, as the digital age is developing strongly, the involving - packet delay [2] ¢ convergence ©

" . artificial intelligence (Al) and the internet of things
need for network communication and data transmission

- . . - . (1oT) achieves significant progress in the industrial
is increasing. Real-time applications, such as online

. . . . L sector, with distributed information systems in AloT
video streaming, video conferencing, and multimedia

- . N . specifically designed to address challenges in network
communication services, are becoming increasingly

i - i ts [3].
prevalent [1]. Poor Quality of Service (QoS) affects o s [3]
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Various research approaches integrate Machine
Learning (ML) with the main goal of solving traffic
control, congestion control and ultimately improving
QoS [4]. Research explores various congestion control
and traffic shaping methods, focusing on their
application in high-bandwidth, real-time scenarios [5]
as well as active queue management (AQM)
mechanisms using improved random early detection
(RED) algorithms [6, 9]. However, the rapid increase
in network traffic places significant pressure on
network systems and routing devices, leading to risks
of network congestion and reduced performance [9]. A
study examines previous research on AQM, identifies
challenges arising from AQM-related algorithms in
decentralized network configurations, and proposes a
comprehensive scheme for new AQM [8]. The
development of variants such as Modified RED (MD-
RED), which has the ability to randomly adjust the
packet drop probability based on the queue length is
demonstrated in research [11]. Additionally, an
extension to RED called DyRED has been developed to
address the limitation and the algorithm was then
compared with RED in different network scenarios, to
improve network performance and reduce congestion
[12]. Improved Active Queue Management (I-RED)
implements a combination of non-linear and linear
packet drop functions. Performance evaluation I-RED
effectively controls the average queue size and delay
under light and heavy network traffic conditions [9].

To resolve issue, the authors propose a novel approach
based on Al for managing and controlling congestion
in network routing systems. Specifically, the authors
develop AIM-RED - an enhanced variation of the
model predictive control method Improved Random
(IM-RED) [6],

Early Detection which  can
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automatically adjust control parameters such as
threshold values (min_th, max_th, max, ). Instead of
AIM-RED continuously
monitors queue state fluctuations and network
IM-RED model and

parameters to align with real-time scenarios. This

using fixed parameters,

conditions, updating the

approach minimizes queue overload, reduces

unnecessary packet drops, and maintains stable
performance under dynamic network conditions.

Additionally, to enhance the ability to predict and
manage queue conditions, the authors integrate the
Deep Q-Network (DQN)

Reinforcement Learning (DRL) method designed to

algorithm, a Deep
predict queue states and calculate packet drop
probabilities. DQN predicts when a queue is likely to
become full and determines the optimal packet drop
DON

continuously observes queue states and forecasts

rate. When applied to network routers,
optimal actions to keep queues within safe levels,
reduce congestion risks, and ensure stable traffic flow.
In the following sections of the paper, Section 2 —
Related Works, describes the RED algorithm, the
improved IM-RED algorithm, and the DQN approach.
In Section 3, the study presents the DAIM-RED model,
including the proposed AIM-RED method and the
combined model of AIM-RED and DQN. Section 4
covers the simulation conducted using the NS-2 tool to
gather experimental data, followed by experiments
with the three models: IM-RED, AIM-RED, and
DAIM-RED. Section 5 presents the experimental
results and discusses the evaluation, including the
comparison of the model with Convolutional Neural
Networks (CNN) and Long Short-Term Memory
(LSTM). Finally, Section 6 is conclusion and future

work.
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2 Related Works

2.1 Random Early Detection (RED) Algorithm

RED, proposed by Floyd and Jacobson in 1993, aims
to reduce network congestion by dropping packets
before the queue becomes full [7]. RED calculates the

average queue length and uses it to decide when to drop

packets. Many studies improve RED by adjusting the
packet drop threshold parameters, such as Adaptive
RED (ARED), where the threshold and drop packet
probability are adjusted based on the network state.
However, these improvements still face challenges

when applied in dynamic network environments. Drop

probability:
(0 if Gayg (1) min_th
. Gay (l) - min_th . : . .
Parop (D) = !—r%x_mm_th X Ppax  ifmin_th < g,y (i) < max_th gy, (1) 1)
1 if qyyg (i) max_th

Where: q,,, represents the average queue value at time
i. The min_th function is the minimum threshold of
the queue. The max_th function is the maximum
threshold of the queue, and P, is the maximum
packet drop probability.

2.2 Improved Random Early Detection (IM-RED)
Method

Many recent studies focus on improving the RED
algorithm, addressing issues such as packet loss [13],
using quadratic linear methods to enhance queue
management [14], and exploring RED with exponential
linear functions (RED-LE) [15] which include the
interaction of linear loss functions and exponential
functions to improve the performance of the original
RED algorithm. The TR-RED (Triple-RED) algorithm
combines three approaches to address deployment as
an alternative to the single linear drop function in RED
[16]. Amuel O. Hassan et al. introduced the IM-RED
algorithm for congestion control in Internet routers in
their study [6]. IM-RED improves the RED algorithm
by using two packets drop probability reduction
functions, a nonlinear (quadratic) function for light and
medium load conditions, and a linear function for

heavy load conditions. Research shows that IM-RED

reduces the average buffer size and improves latency,
especially under heavy load conditions. The advantage
of the algorithm lies in its ability to reduce the average
buffer size across all load conditions to lower latency,
while using a linear function to control congestion
more effectively for optimization under heavy load
conditions.
In addition, IM-RED is designed based on RED,
making it easy to implement on current platforms. IM-
RED divides the threshold between THmin and
THmax into two ranges, using a quadratic nonlinear
function to reduce the packet drop rate and a linear
function to increase the packet drop rate. The main
steps are:
Compute the average queue size (q,yg )-
Determine the package drop action based on g,
including the following cases:

Gave < THmin: NO drop package.
— THpin < qa < Target: packet drop based on
quadratic function.
— Target < qa, < THpyax: packet drop based on
linear function.

Gave = THmax: drop the whole package.
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Nonlinear (quadratic) decay function:

Gavg = THmin \?2
P, = 9max, X (7;“@ o ) (2)
THmax + THmin

Linear decreasing function:

P, = max, + 3(1 — max,) x (=) (3)

2(THmax — 2THmin)

Threshold value (Target):
Target = THp;, + —THmaX;TH"‘i" (4)
However, IM-RED has some limitations, such as using
two packet drop functions can increase computational
complexity and may not be suitable for heterogeneous
network scenarios. It

requires adjustments to

parameters (THpin, THpmax, maxp, ) depending on the
specific network conditions.

2.3 Approaching the Deep Q-Network (DQN) Model
Recently, reinforcement learning (RL) methods,
particularly DQN, have been applied to address
optimization issues in network systems. DQN learns to
optimize actions based on the state of the environment,
helping to automatically adjust the packet drop
probability according to the network's real-time
conditions. Features such as packet length, timestamp
or transport layer security (TLS) and encrypted payload
information can be used as input features to effectively
use Al models. Among them, combining deep learning
(DL) such as ANN and LSTM with ML algorithms
such as RF, KNN LR and SVM, and combining LSTM
with CNN can significantly improve the accuracy of
[16]. Studies highlight the

applications of deep reinforcement learning (DRL),

the research model

which also examine RL-related algorithms [17], but
challenges remain in applying the combination of FRL
and deep neural network algorithms for packet
prediction in internet networks [0].

To calculate the packet drops probability based on

queue forecasting, the DQN method can be used to
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predict the queue state and optimally adjust the packet
drop probability. Approach combines DQN with a
queue forecasting model, improving the performance
of AQM and minimizing queue overflow. The
approach involves:

- Set up the queue model and AQM factors within the
DQN environment so the agent can learn how to adjust
the packet drop probability to maintain the queue
length at an optimal level.

- DQON uses a deep neural network to approximate the
Q-value function Q(s, a; ). Where, s represents the
system state (queue factors), a represents the action
(packet drop probability), and 6 is a parameter of the
neural network (optimized during learning).

- The DQN neural network updates the parameters 6 by
minimizing the loss function:

L(6) = Egsarsn [(r +ymgxQ(s,a’;67) = Q(s,¢; 9))2] ®)
Where, r is the reward received after performing action
a in state s, s’ is the new state after action a, y is the
discount factor, which helps balance short-term and
long-term rewards, and 6~ is the parameters of the Q-
Target network, copied from @ after each step.

- After training, DQN predicts the optimal action
(packet drop probability) based on the queue state.
When the queue approaches its maximum threshold,
packet drop probability increases to reduce the queue

load and prevent congestion.
3 Proposing the DAIM-RED Model

3.1 AIM-RED Improvement Method

3.1.1 Model Idea

AIM-RED improves on IM-RED by applying adaptive
techniques to automatically adjust the threshold

parameters T Hyin, THmax » max,, and the packet drop
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probability function based on the network state. As a
result, AIM-RED reduces the complexity of parameter
setting and increases efficiency in heterogeneous
networks. It responds quickly to changing network
conditions through dynamic parameters and a sigmoid
function. The optimization results in improved
performance, such as reduced average delay, improved
throughput, and a lower unnecessary packet drop rate.
3.1.2 Method Description
- Automatic threshold parameter adjustment:
A dynamic feedback function adjusts THyyin, THmax
based on buffer utilization and traffic variation.
Instead of using fixed thresholds, AIM-RED uses
dynamic thresholds:
THpin(t) =a-B+(1—a)-U(t) (6)
THyax(t) =B -B+(1—p) - U(t) ()
U(t) is the buffer

utilization at time ¢t , @ and S are the adjustment

In which: B is the buffer size,

weights (0 < a, 8 < 1).

- Adaptive packet drops probability function:

A sigmoid function is used instead of a linear or
quadratic function to ensure smoother packet drops and
more responsive reactions to varying traffic conditions.

(8)

Where: k is the amplification factor to adjust the slope

1
1+e—i€-(qavg - Target)

Pb=

of the sigmoid function. The sigmoid function
ensures a softer response under light traffic and
increases more rapidly under heavy traffic.
- Adaptive update to network conditions:
AIM-RED analyzes Jitter (delay variation) and
throughput to adjust dynamic max, :
max, (t) =y - (1 - ]Jitter(t)) + & - Throughput(¢) (9)
Where, y,d are the weights. Jitter (t) is the delay
variation at time t, and throughput (t) is the

throughput at time ¢.

3.1.3 Proposing AIM-RED Algorithm
Table 1 AIM-RED Improved Method Pseudocoding Algorithm
Algorithm 1: AIM-RED pseudocode algorithm

Initialize
Buffer size (B)
Weighting: «, B, v, 6

Amplification factor:

max,, original (max,, _init)

At each time interval (t)

Calculate buffer usage U,
Update threshold: T H i, (t) and T H a5 (t)

©O©| 0O N| o O B W N =

Calculate packet drop probability: P,

=
o

Dynamic maxP calculation: max, (t)

If

(=Y
(=Y

-
N

P, > maxy, (t)

=
w

Drop package

H
o

Analysis

[EY
o1

Monitor Jitter(t), Throughput(t), and P, to
adjust: a, B8, v, 6
Table 1 describes the AIM-RED algorithm, which

dynamically manages queue thresholds and packet

drop probabilities. The algorithm initializes
parameters, including buffer size, weighting factors,
and amplification factors. At each time interval, it
calculates buffer usage, updates min-max thresholds,
and determines packet drop probabilities. When the
probability exceeds the dynamic maximum value,
packets are dropped. The algorithm monitors delay,
throughput, and drop probabilities, adjusting
parameters to enhance queue management and ensure
efficient network operation.

3.2 Proposing DAIM-RED Combination Model
AIM-RED is a dynamic queue management algorithm

based on the RED mechanism, enabling better
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congestion control and optimizing packet dropping
when the queue is full. However, AIM-RED
parameters, such as queue thresholds and packet drop
probabilities, can be adjusted for even greater
effectiveness, and DQN helps find these optimal
parameters through the learning process. DQN is a ML
method that uses DL in reinforcement learning. Model
utilizes neural networks to learn a Q-value function,
which helps optimize decisions in dynamic
environments like queue management.

3.2.1 DAIM-RED Method

The DAIM-RED model combines AIM-RED with
DQN as an improved approach in AQM to optimize
network traffic management in routers. Model consists
of two main components: AIM-RED, an algorithm
automatically adjusts packet drop thresholds based on
network conditions, reducing packet loss and delay,
and DQN, a model used to determine the optimal action
(drop a packet, accept a packet, or adjust AIM-RED
parameters) to optimize goals such as reducing delay
and increasing network throughput.

The combined approach:

- AIM-RED calculates network metrics, such as queue
size, packet loss rate, and average delay, and provides

these states as input to DQN.

Tap chi Khoa hoc & Céng nghé Vol 8, No 1

- DQN learns the optimal policy to select the
adjustment parameters for AIM-RED (such as miny, ,
maxy, , Or packet drop rate).
- The action results from DQN are applied to modify
the AIM-RED parameters, creating an adaptive
optimization loop.
3.2.2 Description of the Proposed DAIM-RED Model
- State:
St = [Q¢, D¢, Pt (10)
In which, Q; represents the queue size at time t, D; is
the average delay at time t and P; is the packet loss rate
at time t.
- Action:
A; € { Decrease ming,, Increase minyy,,
Decrease maxyy,, Increase max., }  (11)
- Reward:

Ry =—(a D+ B-P) (12)
Where, D; is the average delay, P; is the packet loss
rate, and a, 8 are the weight coefficients for delay and
packet loss.

Action value function (Q-function):
Q(Sp, Ar) = Ry +y -maxy,, Q(Se11, A1) (13)
Where, y is the discount factor.

Q-value Q(s,a; ), I Reward R, bjudTl
DQN (Deep Q-Network) £ greedy AIM-RED
Agent — (mintha maxth)
QS lUpda‘te
State S, ’, . Environment
Queue Size, Delay, Drop rate | @ Action At (Network)
Qe Dp, Py
N
Parameters 6 (X, ) state St41
Queue Size, Delay, Drop rate ]
Transitions Qe De, P Observe

Figure 1 Diagram describing the DAIM-RED Model
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Figure 1 includes key components such as the Agent,

which receives the current state S; including
parameters such as queue size (Q;), delay (D;), and
packet loss rate (P;). DQN uses a deep neural network
with parameters 6 (a, y) to compute the Q-value,
evaluating the action A;. First, the agent selects the
optimal action A, or explores a new action based on the
€ — greedy. Next, the AIM-RED model adjusts the
minimum threshold (ming, ) and maximum threshold
(maxy,) for the RED active queue management
algorithm, based on feedback from the DQN network.
The network environment then receives the action Ag,
returns the new state S;,; and the reward S; allowing
the agent to update its policy.

3.2.3 DAIM-RED Algorithm

The algorithm initializes AIM-RED with default
parameters and DQN with a neural network, replay
queue, and key parameters. For each episode, it resets
the environment, observes states, chooses actions using
g-greedy, updates AIM-RED parameters, trains DQN,
and saves optimal models. Table 2 shows the
pseudocode algorithm of DAIM-RED.

Table 2 DAIM-RED Model Pseudocode Algorithm

Algorithm 2: DAIM-RED pseudocode algorithm

1 | Initialize AIM-RED with default parameters

(ming, , maxy, , max,, wy, ).

Initialize DOQN:

Neural network for function Q(S, A).

Replay queue.

O N O N

Parameters: learning rate a, discount factor

y, € - greedy

9 | For each episode:

10 | Reset the network environment (empty queue,

no packet loss)

11 | Get the initial state: Sy = [Q¢, D¢, P:]

12 | For each step in the set:

13 | Choose action A; using & -greedy from
Q(St, Ap):
14 | Take action A; :

15 | Update parameters AIM-RED (miny, ,

max,, ) follow A,

16 | Observe the new state S;,; and the reward R,

17 | Save (S;, A¢, Re, St4q) inreplay queue.
18 | Train the DQN network by:

19 | Get minibatch from replay queue.

20 | Update Q(S;, Ap):

21 | Update state: S; = S¢44

22 | Save the best DQN model and AIM-RED

parameters

4 Experimentation

4.1 Simulation

The network simulation with NS-2 involves 30 routers
connected in a centralized configuration. Routers 1 to
10 are connected to router 11 with a bandwidth of 20
Mbps and a delay of 5 ms. The connection between
router 11 and router 12 is a bottleneck connection with
a bandwidth of 10 Mbps and a delay of 20 ms. Routers
13 to 30 are connected to router 12, with TCP flows
coming from FTP sources and UDP flows from CBR
sources, creating bidirectional connections. The
window size is limited to 1 000 bytes, and packet drops
occur when the queue is full. The simulation runs for
100 seconds.

Figure 2 shows routers routers R11 and R12 are
connected with lower bandwidth and higher latency,
creating a bottleneck connection that can lead to

network congestion. Packet loss also occurs at a point.
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Figure 2 Network Simulation Diagram
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The simulation connection is intended to produce
uneven and complex data, clearly showing the delay
time of packets, allowing for more accurate analysis
and test evaluation. The total simulation time is 100
seconds, with packet traffic monitored to obtain test
data. The time period is chosen because it is long
enough to simulate real network situations and keep the
data volume manageable, allowing for more efficient

analysis and processing.

RangeIndex: 1133916 entries, @ to 1133915
Data columns (total 2@ columns):
# Column Non-Null Count Dtype

2} event_type 1133916 non-null object
1 time 1133916 non-null floate4
2 src_node 1133916 non-null int64d

3 dst_node 1133916 non-null int64

4 packet_type 1133916 non-null object
5 packet_size 1133916 non-null int64

6 flags 1133916 non-null object
7 fid 1133916 non-null int64

8 src_ip 1133916 non-null float64
9 dst_ip 1133916 non-null float6d

1133916 non-null int64
1133916 non-null int64
12 d_processing 1133916 non-null floated
13 d_queue 1133916 non-null float64
14 d_transmission 1133916 non-null float64
15 d_propagation 1133916 non-null float64
16 average delay 1133916 non-null floated
17 total_delay 1133916 non-null floate4
18 queue_size 1133916 non-null int64d
19 queue_label 1133916 non-null object
dtypes: float64(9), int64(7), object(4)
memory usage: 173.0+ MB

10 seq_num
11 packet_id

Figure 3 Network Data after Processing
The simulation result shows the generated packets have
12 fields, including the IP-header fields. From the trace

data in the simulation, after analyzing and processing
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the data, the delay, queue length, and packet drop rate
are calculated. The simulation provides data for
experimentation. Figure 3 shows a total of 1,133,916
packets transmitted over the network, and the
processed data contains 20 attributes.

4.2 Model Experiment

The experiments evaluate the effectiveness and
adaptability of queue management models (IM-RED,
AIM-RED, and DAIM-RED) under various network
conditions.

4.2.1 Experiment 1: Performance Evaluation with
Fixed Parameters

Fixed parameters such as ming,, maxy,, and max

aim to evaluate the performance of the IM-RED model:
— miny, = 10 packets (minimum queue size threshold).
— maxy, = 30 packets (maximum queue size threshold
where the marking/drop probability reaches 100%).

— max} = 0.2 (maximum packet marking probability).
— wq =0.002 (weight factor).

The experiment measures the average queue size to
determine the model's effectiveness in maintaining
acceptable delay levels. It calculates packet drop
probability, queue size, and delay to analyze queue
behavior over time in detail.

4.2.2 Experiment 2: Evaluating Adaptability to
Network Conditions

In the AIM-RED model, the thresholds miny;,, maxyy,,
and max, dynamically update based on the current
network state (queue size, delay, and packet loss rate):
— ming, = (5 to 20) packets (changes with network
conditions)

— maxy, = (30 to 80) packets (changes with network
conditions)

— max, =(0.05to 0.5) (changes with network conditions)
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The experiment evaluates queue utilization efficiency,
the ability to reduce packet loss, and throughput
improvement. It also assesses queue stability and
network performance as the minimum and maximum
thresholds change. Approach analyzes the adaptability
and effectiveness of the model in fluctuating network
conditions.

4.2.3 Experiment 3: Optimizing packet drop
probability and threshold

The optimization and learning capability of DAIM-
RED integrates reinforcement learning techniques
(DQN) with AIM-RED, the

parameters:

using following
state_size represents the number of input states,
action_size represents the number of actions the agent
can take, and the agent stores experiences, including
state, action, reward, and next_state, for training the
DQN network.

— y = 0.95 (discount factor).

— & =1.0 (exploration factor for discovering new actions).
— &min = 0.01 (minimum value of epsilon as
exploration decreases).

— Edecay = 0.995 (rate of epsilon decay over time).

— size = 32 (batch size for stabilizing the optimization

process during training).

(a)Packet Drop Rate (%)

100

80

60

Drop Rate (%)

T T
0 20 40 60 80

T
100

Time (s)

Avg Delay (ms)

The DQN approach learns optimal actions, balancing
high
in complex and dynamic network

exploration and exploitation to achieve
performance
conditions. The goal is to optimize thresholds and
packet drop probabilities through reinforcement
learning.

Additionally, the research experiments with other Al
models, such as CNN and LSTM combined with AIM-
RED. CNN excels in processing spatially structured
data, such as images or data matrices. When integrated
with AIM-RED, CNN effectively analyzes features
like bandwidth, latency, and queue size through matrix
representations. LSTM serves as an optimal choice for
handling sequential data, such as time series of network
traffic. Combined with AIM-RED, LSTM enables the
model to learn patterns of delay and dynamic changes
in network traffic, ensuring better predictions for time-

dependent data.
5 Results, Evaluation, and Discussion

5.1 Results

5.1.1 Experiment Results 1

The IM-RED model represents parameters such as
packet drop rate (%), average delay, average queue
size, and network throughput in the experimental
model over 100 seconds network simulation run time.

(b) Average Delay

|y

o

o
L

T T T T T T
0 20 40 60 80 100

Time (s)

Figure 4 (a) Packet Drop Rate and (b) Average Delay of IM-RED Model
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The Packet drops rate chart, calculated as a percentage
(%), reflects the queue control capability of the
mechanism. A high drop rate indicates many packets
are lost due to queue overflow. As shown in Figure 4a,

the drop rate varies between 0% and over 35%,

(c) Average Queue Size

Tap chi Khoa hoc & Céng nghé Vol 8, No 1

indicating a relatively high level. Figure 4b illustrates
the average packet delay in the network, encompassing
processing, queueing, transmission, and propagation
times. The average delay ranges from 0.75 ms to over
1.75ms.

(d) Throughput

10000
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Avg Queue Size

4000
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2000

Throughput (Bytes)

1000 A

T T u T y T
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Time (s)

T T T T y T
(4] 20 40 60 80 100
Time (s)

Figure 5 (c) Average queue size and (d) throughput of IM-RED model

Figure 5c illustrates the Average Queue Size measured
in the number of packets, indicating the queue size
gradually increases from 0 to over 10,000 packets
within 100 seconds, highlighting a serious queue
buildup. Figure 5d shows throughput measured in

Mbps, reflecting the amount of data processed and

(a) Packet Drop Rate (%)

transmitted through the network over time. Throughput
fluctuates between 0 Mbps and over 0.04 Mbps.

5.1.2 Experiment Results 2

Experiment result 2 shows the changes in the metrics

when the proposed AIM-RED method is applied.

(b) Average Delay

o o o
IS o @

Drop Rate (%)

o
~

o
o

Avg Delay (ms)

o

o
@®

] 20 40 60 80 100
Time

0 20 40 60 80 100
Time

Figure 6 (a) Packet Drop Rate and (b) Average Delay of AIM-RED Model

Figure 6a presents the packets drop rate decreases significantly, fluctuating from 0% to around 1% and stabilizing

by the 100th second. Figure 6b shows the Average Delay, which remains stable at a lower level, fluctuating between
0.9 msand 1.4 ms.
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(d) Throughput
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Figure 7 (c) Average Queue Size and (d) throughput of AIM-RED Model

Average gqueue size plot in packets. Figure 7c illustrates the queue size fluctuates less, similar to experiment 1, and
the throughput in Figure 7d remains higher, ranging from over 20 Mbps to over 30 Mbps.
5.1.3 Experiment Results 3

The experiment with the DAIM-RED model shows the combination of the DQN algorithm with AIM-RED to solve the

reinforcement learning problem. DQN is used to train an
environment to optimize long-term cumulative rewards.
combination when tested over 100 episodes.

108 A
106 4

104

Queue Size

100 A

98

(A) Average Queue Size per Episode
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Figure 8 (a) Average Queue Size and (b) Average Delay when Executing 100 Episodes

Figure 8a shows the average queue size remains stable at around 102-104 throughout the 100 episodes. Figure 8b
illustrates the average delay fluctuates between 24 ms and 32 ms across the episodes. The graph shows significant
fluctuations in some episodes, but there is no notable increasing or decreasing trend.
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Figure 9 (c) Packets Drop Rate and (d) throughput Evaluation when Performing 100 Episodes
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Figure 9c presents the packet drop rate initially starts
high at 25% but drops significantly to near 0% after the
first 10 episodes and remains stable until the 100™
episode. Meanwhile, the throughput fluctuates between
220% and 300% across the episodes, showing no
declining trend but displaying some strong
fluctuations, as shown in Figure 9d.

5.2 Evaluation and Discussion

The charts above demonstrate the DAIM-RED model
operates effectively in maintaining stable queue
sizes, reducing packet drop rates, and keeping
throughput high. However, there is significant delay

variation, which negatively impacts the quality of

Tap chi Khoa hoc & Céng nghé Vol 8, No 1

service (QoS), especially in applications requiring
low latency. IM-RED (Experiment 1) shows the
lowest performance among the three models, with
instability and suboptimal QoS metrics. AIM-RED
(Experiment 2) presents improvements but still
exhibits instability in some metrics such as delay and
DAIM-RED (Experiment 3)

illustrates significant improvements across all QoS

packet drop rate.

metrics, particularly with packet drop rates nearly
reaching 0% and stable throughput. Notably, the
integration with DQN helps the system learn and
optimize performance over time. Table 3 shows a

comparison of the models.

Table 3 Comparison and Evaluation Table of IM-RED, AIM-RED, and DAIM-RED Models

Evaluation
o IM-RED AIM-RED DAIM-RED
criteria
Average Large oscillation from ||More stable, but still some i .
) ) Stable at 102-104, no big fluctuations.
Queue Size |0 to 200, unstable. fluctuations.
Oscillation from 0 ms . ] L.
Average ) Volatility decreased, but still ||More stable, small fluctuations in the
to 50 ms, high )
Delay - high. range of (24-32) ms.
volatility.

Initially high,
Packet Drop )
gradually decreasing

Significantly decreased, but

still some spikes in some

Rapidly drops from 25% to nearly 0%

after only 10 episodes, maintaining

not fully optimized. complete.

Rate . -
but not stable. periods. stability.
Oscillation is not yet  |[Improved, less fluctuations, ([More  stable,  maintaining  high
Throughput ) )
unstable. but not yet highly stable. throughput in the range of 220%-300%.
Learning Yes, using DQN to learn and optimize
. None. None. ) ) ) o
Ability actions, improving efficiency.
Improved from Adjusted from IM-RED, Outstanding improvement with DQN
Improvement o o o ]
Level traditional RED, but  ||optimized, but not yet combination, comprehensive QoS
eve

optimization.
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The experimental results evaluate the performance of DAIM-RED compared to CNN-AIM-RED and LSTM-AIM-
RED. The evaluation measures the accuracy and loss of the models and visualizes the metrics through charts for

Train Accuracy, Train Loss, Validation Accuracy, and Validation Loss.

Accuracy over epochs Loss over epochs
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Figure 10 Accuracy and Loss of the CNN-AIM-RED Model over 100 Epochs

Figure 10 depicts the accuracy and loss of the CNN-AIM-RED model. Train accuracy remains stable around 85%-
87%, and validation accuracy peaks at nearly 88%, though it remains lower than DAIM-RED. Train loss decreases
steadily, and validation loss shows greater stability compared to LSTM-AIM-RED but remains higher than DAIM-
RED. While it demonstrates better stability than LSTM-AIM-RED, it does not reach the performance level of
DAIM-RED.
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Figure 11 Accuracy and Loss of the LSTM-AIM-RED Model over 100 Epochs

Figure 11 illustrates the accuracy and loss of the LSTM-AIM-RED model. Train accuracy reaches around 85%,
but validation accuracy fluctuates significantly, ranging from 82% to 90%, with lower stability compared to DAIM-

RED. Additionally, train loss decreases steadily, but validation loss shows large fluctuations, indicating weaker
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generalization ability. The model handles sequential data effectively but demonstrates less adaptability to changes
in the network compared to DAIM-RED.
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Figure 12 Accuracy and Loss of the DAIM-RED Model over 100 Epochs

In Figure 12, the accuracy and loss of the DAIM-RED model indicate that its Accuracy reaches the highest level
among the three models, with validation accuracy consistently exceeding 93%. It shows less fluctuation compared
to LSTM-AIM-RED. Both train loss and validation loss decrease rapidly and remain stable, demonstrating that

DAIM-RED generalizes better than the other two models.

Table 4 Comparison and Evaluation Table for the CNN-AIM-RED, LSTM-AIM-RED and DAIM-RED Models

Model Accuracy (%) Loss (%) Dynamic features Stability
CNN-AIM-RED 85-87 24-35 Limitations in sequential data Stable but not high
LSTM-AIM-RED 82-89 23-37 Handles temporal data well Less stable than DAIM-RED
DAIM-RED 91-94 16-18 Adapts well to change Very stable

Table 4 presents the metrics of the DAIM-RED 6 Conclusion and Future work
model, showing an approximately 7% higher
Accuracy compared to the CNN-AIM-RED model
and around 5% higher than the LSTM-AIM-RED
model. Meanwhile, the loss of the DAIM-RED
model is lower than that of both the CNN-AIM-RED
and LSTM-AIM-RED models. The DAIM-RED

model utilizes a DQN network to optimize queue

The proposed DAIM-RED model combines the
enhanced AIM-RED method with DQN to optimize
gueue state prediction and determine packet drop
probabilities. The integration of AIM-RED and DQN
provides a comprehensive approach, utilizing adaptive
techniques to handle complex network states, thereby
optimizing traffic control and improving QoS in
network systems. Compared to the CNN-AIM-RED
and LSTM-AIM-RED models, DAIM-RED achieves

high training accuracy, offering flexibility and

management in  AQM. The model applies
reinforcement learning to identify an optimal policy,
reducing average latency and adapting effectively to

h in data flow. - . .
changes In data flow adaptability to dynamic and diverse network
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environments, effectively enhancing congestion
management and control.

The practical development of the DAIM-RED model
focuses on applications in large-scale networks,
particularly 5G, 10T, and cloud data centers. Integrating
DAIM-RED into routing devices can improve queue
management and optimize network traffic in
communication networks. Furthermore, the model can
be extended to support more complex networks, such

as Software-Defined Networking (SDN) or Network

Function Virtualization (NFV), to enhance automation
and system performance. Future research may focus on
optimizing the model, reducing computational
overhead, and increasing its applicability in mitigating
congestion at routers.
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Pé xuat mo hinh dwa vao tri tu¢ nhan tao dé quan ly va diéu khién tic nghén tai b dinh tuyén

trén mang truyén thong Internet

Vuong Xuan Chi”, Duong Minh Tuan™
Khoa Cong nghé Thong tin, Truong Pai hoc Nguyén Tat Thanh

“vxchi@ntt.edu.vn, “dmtuan@ntt.edu.vn

Tom tit Sy phat trién manh mé cua cac ung dung truyén théng da phuong tién di 1am ting nhu cu giao tiép
mang, gay ap luc 1o6n lén hé thong mang va doi hoi cac giai phap quan 1y hang doi hiéu qua dé duy tri hiéu suét,
giam thiéu tic nghén. Trudc sy bién dong cua luu lwong truyén tai va yéu cau ngay cang cao vé chat lwong dich vu
(Q0S), cac phuong phap quan Iy hang doi truyén théng khong con dap tmg duoc. Dé giai quyét vin dé nay, bai bao
dé xuat mé hinh cai tién DAIM-RED, mang lai giai phap toan dién, st dung k¥ thuat thich nghi dé diéu chinh
ngudng min-max, giam xac suat tha géi va téi wu hoa hiéu qua quan 1y hang doi tai cac router mang. Mé hinh bao
gém AIM-RED, mét phuong phap thich nghi ¢6 kha ning tw dong cap nhat mé hinh va diéu chinh tham sb dya
trén di liéu mang, cung véi Deep Q-Network, gilp du doan tinh trang hang doi ddy va dua ra ty 18 bo goi tin toi
wu. DAIM-RED c¢6 hiéu ning mang téi wu hon so véi md hinh két hop AIM-RED véi CNN va LSTM. M6 hinh
khéng chi dat hiéu ning mang cao hon ma con giam thiéu tic nghén, dam bao QoS trong méi trudng mang ngay

cang phtrc tap.

Tir khoa quan 1y hang doi, mang hoc sau ting cuong, DAIM-RED, kiém soat tic nghén, hiéu ning mang
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