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Tóm tắt   

Trong những năm gần đây, mô hình mạng học sâu vật lý (Physics-Informed Neural 

Networks - PINNs) đã trở thành hướng đi mới trong lĩnh vực tính toán khoa học, khi 

kết hợp trí tuệ nhân tạo với các mô hình vật lý. PINNs cho phép tích hợp trực tiếp các 

phương trình vi phân (ODEs, PDEs) vào quá trình huấn luyện mạng nơ-ron, giúp tạo 

ra các mô hình vừa chính xác về mặt vật lý, vừa có khả năng xử lý dữ liệu thực tế. 

Bài báo cung cấp cái nhìn tổng quan về PINNs, từ nền tảng lý thuyết, kiến trúc mạng, 

đến cơ chế huấn luyện và các ứng dụng điển hình như giải PDEs, mô hình nghịch 

đảo, mô phỏng hệ động lực và đa vật lý. Ngoài ra, bài viết cũng phân tích các ưu 

điểm, thách thức kỹ thuật hiện nay và định hướng nghiên cứu tương lai như adaptive 

PINNs, phân rã miền (domain decomposition), và các biến thể như XPINNs, hp-

VPINNs, MgFNO. Kết luận, PINNs là công cụ tiềm năng trong các bài toán có dữ 

liệu hạn chế nhưng đòi hỏi độ chính xác vật lý cao. Việc phát triển và ứng dụng PINNs 

tại Việt Nam là cần thiết, góp phần thúc đẩy lĩnh vực khoa học tính toán và trí tuệ 

nhân tạo. 
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1. Đặt vấn đề 

1.1. Bối cảnh và động lực 

Trong thời đại số hoá khoa học và công nghệ, nhu cầu 

xây dựng các mô phỏng hiện tượng vật lý ngày càng 

tăng cao trong nhiều lĩnh vực: từ dự báo khí tượng, thủy 

văn, mô hình y sinh, địa chất, vật liệu cho đến kỹ thuật 

hàng không và năng lượng. Tuy nhiên, các phương 

pháp mô phỏng truyền thống như phần tử hữu hạn 

(FEM), sai phân hữu hạn (FDM) hay phương pháp thể 

tích hữu hạn (FVM) thường đòi hỏi chi phí tính toán 

lớn, khó mở rộng cho bài toán nhiều chiều hoặc miền 

tính toán phức tạp.  

Trong khi đó, học sâu đã đạt được những thành tựu vượt 

bậc trong nhận diện hình ảnh, xử lý ngôn ngữ và chuỗi 

thời gian. Tuy nhiên, các mô hình học sâu thuần tuý lại 

gặp khó khăn khi áp dụng vào các lĩnh vực kỹ thuật và 

khoa học tự nhiên, nơi mà dữ liệu huấn luyện thường 

khan hiếm, và tính đúng đắn vật lý là yếu tố bắt buộc. 

Mạng học sâu vật lý ra đời như một giải pháp trung hoà 

giữa hai thế giới: kết hợp cấu trúc mạng học sâu với 

ràng buộc từ các phương trình vật lý (ODEs, PDEs), 

cho phép mô hình vừa học từ dữ liệu, vừa đảm bảo tuân 

thủ các định luật vật lý cơ bản. Ý tưởng này do Raissi 

et al. [1] đề xuất vào năm 2019, và nhanh chóng mở ra 

một hướng mới cho lĩnh vực Học máy khoa học. 

Đặc biệt, sự phát triển của các biến thể mới như 

XPINNs, hp-VPINNs, MgFNO và PINO/FNO cho thấy 

tiềm năng mở rộng ứng dụng mạnh mẽ của phương 

pháp này trong môi trường nhiều tỉ lệ, đa trường vật lý, 

và miền tính toán lớn. 

Do đó, việc nghiên cứu tổng quan về PINNs không chỉ 

có ý nghĩa học thuật, mà còn mang tính thực tiễn cao 

trong việc định hướng ứng dụng học máy vào các ngành 

khoa học, kỹ thuật tại Việt Nam, nơi dữ liệu còn hạn 

chế nhưng nhu cầu mô phỏng chính xác ngày càng lớn. 

1.2. Đóng góp của bài báo 

Bài báo này được xây dựng nhằm đáp ứng ba mục tiêu 

chính: 

(i) hệ thống hóa tiến bộ của PINNs từ năm 2019 đến 

năm 2025; 

(ii) phân tích điểm mạnh, hạn chế và đặc trưng của từng 

nhánh giải thuật chính; 

(iii) đề xuất khả năng ứng dụng thực tiễn của PINNs và 

các biến thể trong bối cảnh nghiên cứu và công nghiệp 

tại Việt Nam. 

1.3. Phạm vi và phương pháp khảo sát 

1.3.1. Mục tiêu khảo sát 

Bài báo hướng đến việc tổng hợp và hệ thống hóa các 

hướng phát triển chính của PINNs và các biến thể mở 

rộng giai đoạn 2019-2025. Do hạn chế về hạ tầng tính 

toán, tác giả không tiến hành thực nghiệm lại, mà thay 

vào đó sử dụng kết quả công bố trong các bài báo khoa 

học uy tín để định lượng so sánh hiệu quả các mô hình. 

Cách tiếp cận này nhằm đảm bảo tính khách quan và 

mở rộng phạm vi khảo sát trong điều kiện tài nguyên 

phù hợp. 

https://doi.org/10.55401/k8sy4e12
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1.3.2. Phạm vi nội dung 

 Phạm vi mô hình: bao gồm các mạng PINNs cổ điển, 

các biến thể như XPINNs, hp-VPINNs, gPINNs cũng 

như các nhánh học toán tử sâu như FNO, PINO, 

MgFNO và PINTO. 

 Loại bài toán: giới hạn ở các bài toán PDEs/ODEs 

phổ biến có benchmark công bố rộng rãi như Burgers 

1D, Allen-Cahn 2D, Darcy Flow và Navier-Stokes. 

 Tiêu chí lựa chọn tài liệu: 

 Bài báo quốc tế từ năm 2019 đến tháng 6/2025. 

 Ưu tiên các nghiên cứu có kết quả định lượng rõ ràng 

(Rel. L2 error, MAE, inference time). 

 Ưu tiên công bố tại các hội nghị (ICLR, NeurIPS, 

ICML) và tạp chí Q1 theo SCImago. 

1.3.3. Phương pháp thu thập và tổng hợp dữ liệu 

 Công cụ truy xuất: Google Scholar, Scopus, arXiv 

API, Zotero. 

 Từ khóa tìm kiếm: "PINNs", "Physics-Informed 

Neural Networks", "XPINNs", "FNO", "PINO", 

"PINTO", "scientific machine learning". 

 Chiến lược chọn lọc: 

 Đọc toàn văn để xác nhận mô hình có áp dụng PDEs, 

trình bày công thức loss rõ ràng, có báo cáo số liệu thực 

nghiệm. 

 Lưu trữ thông tin gồm: mô hình, cấu trúc mạng, hàm 

mất mát, bài toán, dữ liệu, độ lỗi Rel. L2, thời gian huấn 

luyện (nếu có), phần cứng sử dụng. 

 Chuẩn hóa so sánh: với mỗi bài toán (ví dụ Burgers 

1D), nếu có nhiều báo cáo, chỉ chọn kết quả tốt nhất từ 

mỗi mô hình để tạo bảng so sánh. Các giá trị được ghi 

nhận kèm nguồn trích dẫn rõ ràng trong phần Tài liệu 

tham khảo. 

1.3.4. Giới hạn khảo sát 

 Do không thực hiện huấn luyện lại, bài báo không 

đánh giá độ ổn định mô hình theo từng lần chạy mà chỉ 

ghi nhận giá trị trung bình tốt nhất từ các báo cáo gốc. 

 Sai khác về điều kiện biên, lưới không gian, thời 

gian hoặc cách chọn điểm đối chiếu vật lý có thể làm 

các kết quả khác biệt; vì vậy bảng định lượng chỉ mang 

tính chất tham khảo thứ bậc. 

2. Kiến thức nền 

2.1. Quy ước ký hiệu 

Bảng 1.  Quy ước ký hiệu 

Ký hiệu Diễn giải 

x ∈ Ω ⊂ ℝ𝑑 Biến không gian trong miền tính 

toán 

𝑡 ∈ [0, 𝑇] Biến thời gian 

𝑢(x, 𝑡) Nghiệm thực của hệ vật lý 

𝒩(x, 𝑡, 𝜃) 

Mạng nơ-ron bao gồm các biến 

không gian x, thời gian 𝑡, và tham 

số 𝜃. 

𝑢𝜃(x, 𝑡) Nghiệm xấp xỉ bởi mạng nơ-ron, 

tham số bởi 𝜃 

𝒩[𝑢] Toán tử vi phân (PDEs) 

𝑓(x, 𝑡) Thành phần nguồn ngoại sinh 

ℛ𝑝ℎ𝑦𝑠 Phần dư phương trình vật lý 

𝜆𝑘 Trọng số hàm mất mát 

ℒ𝑑𝑎𝑡𝑎, ℒ𝑏𝑐 , ℒ𝑝ℎ𝑦𝑠 Các thành phần trong hàm mất mát 

𝑁𝑑 , 𝑁𝑓 Số lượng điểm dữ liệu và điểm đối 

chiếu vật lý 

2.2. Phương trình vi phân và bài toán mô phỏng 

Phương trình vi phân là công cụ cốt lõi trong mô hình 

hóa các hệ thống động học, vật lý tính toán và sinh học. 

Chúng mô tả sự thay đổi của đại lượng vật lý theo không 

gian và thời gian, ví dụ: nhiệt độ, áp suất, nồng độ, vận 

tốc,… 

Những bài toán này thường được biểu diễn tổng quát 

như sau: 𝒩[𝑢](x, 𝑡) = 𝑓(x, 𝑡), x ∈ Ω, 𝑡 ∈ [0, 𝑇] 

Tùy vào thông tin đầu vào, bài toán được phân loại 

thành: 

 Bài toán giá trị ban đầu (Initial Value Problem): xác 

định nghiệm từ điều kiện khởi đầu tại 𝑡 = 0 . 

 Bài toán biên (Boundary Value Problem): xác định 

nghiệm thỏa mãn điều kiện tại biên không gian của 

miền tính toán. 

Ví dụ một số phương trình phổ biến: 

 Phương trình nhiệt: 

∂𝑢

∂𝑡
= 𝛼

∂2𝑢

∂𝑥2
 

Mô tả khuếch tán nhiệt, được dùng trong mô hình 

truyền nhiệt, dòng khuếch tán hóa học. 

 Phương trình sóng: 

∂2𝑢

∂𝑡2
= 𝑐2

∂2𝑢

∂𝑥2
 

Áp dụng cho sóng cơ học, dao động cấu trúc. 

 Phương trình động lực học chất lỏng: 

𝜌 (
∂u

∂𝑡
+ u ⋅ ∇u) = −∇𝑝 + 𝜇∇2u 

Mô tả chuyển động của chất lỏng không nén, có độ nhớt 

Karniadakis, G. E., Beskok, A., & Aluru, N. [2]. 

Các phương pháp truyền thống để giải phương trình vi 

phân bao gồm: phần tử hữu hạn, sai phân hữu hạn và 

thể tích hữu hạn. Tuy nhiên, những phương pháp này 

gặp khó khăn khi mở rộng sang không gian nhiều chiều 

hoặc khi dữ liệu đo thực nghiệm không đầy đủ. 

2.3. Mạng nơ-ron nhân tạo 
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PINNs tiếp cận bài toán bằng cách dùng một mạng nơ-

ron 𝑢𝜃(𝑥, 𝑡) để xấp xỉ nghiệm của hệ vi phân. Mạng học 

hàm ánh xạ: 

(x, 𝑡) ↦ 𝑢𝜃(x, 𝑡) 

Mạng này được huấn luyện sao cho đầu ra của nó không 

chỉ phù hợp với dữ liệu đầu vào, mà còn thỏa mãn 

phương trình vật lý dưới dạng phần dư: 

ℛ𝑝ℎ𝑦𝑠(x, 𝑡; 𝜃): = 𝒩[𝑢𝜃](x, 𝑡) − 𝑓(x, 𝑡) 

Sai số này được đưa vào hàm mất mát như một ràng 

buộc vật lý, bên cạnh sai số dữ liệu và điều kiện biên. 

Các đạo hàm của 𝑢𝜃 được tính qua vi phân tự động, cho 

phép mạng “chèn” vào biểu thức phương trình vật lý.  

2.4. Hàm mất mát tổng quát 

Hàm mất mát huấn luyện PINNs có cấu trúc tổng quát 

gồm ba phần:  

ℒ(𝜃) = 𝜆data ℒdata + 𝜆𝑏𝑐ℒ𝑏𝑐 + 𝜆phys ℒphys  

Trong đó: 

 ℒdata : sai số tại điểm dữ liệu quan sát. 

 ℒ𝑏𝑐  : sai số tại các điều kiện biên hoặc khởi tạo. 

 ℒ𝑝ℎ𝑦𝑠 : sai số giữa nghiệm mạng học được và 

phương trình vi phân. 

 𝜆data , 𝜆𝑏𝑐, 𝜆phys : trọng số điều chỉnh mức ưu tiên 

của từng thành phần. 

3. Kiến trúc và nguyên lý hoạt động của PINNs 

3.1. Kiến trúc tổng quát của PINNs 

PINNs là một kiến trúc lai kết hợp giữa mạng nơ-ron và 

mô hình vật lý dưới dạng phương trình vi phân. Không 

giống các mô hình học sâu thuần túy chỉ học từ dữ liệu 

gắn nhãn, PINNs được huấn luyện dựa trên ba nguồn 

thông tin: (i) dữ liệu thực nghiệm (nếu có), (ii) điều kiện 

biên/khởi tạo, và (iii) tri thức vật lý biểu diễn dưới dạng 

phương trình đạo hàm riêng (PDEs). 

Ý tưởng này được giới thiệu lần đầu tiên trong công 

trình của Raissi et al. [1] – một trong những bài báo nền 

tảng đặt tên cho thuật ngữ “PINNs”: 

Kiến trúc của PINNs có thể chia làm ba khối chức năng 

chính được thể hiện rõ trong Hình 1 bên dưới: 

 Mạng nơ-ron dự đoán nghiệm vật lý 𝒩(x, 𝑡, 𝜃); 

 Mạng thông tin vật lý: nơi đánh giá sai số theo từng 

nguồn: dữ liệu thực nghiệm, điều kiện biên và phần dư 

vật lý. 

 Hàm mất mát huấn luyện tổng quát: là tổ hợp tuyến 

tính của các thành phần mất mát với các trọng số để cân 

bằng tầm quan trọng của từng thành phần. 

 
Hình 1. Kiến trúc tổng quát của mạng PINNs 

3.2. Mạng nơ-ron xấp xỉ nghiệm 

Mạng nơ-ron 𝑢𝜃(𝑥, 𝑡), nhận đầu vào là cặp toạ độ 

không gian, thời gian (𝑥, 𝑡), và trả về đầu ra là nghiệm 

vật lý ước lượng 𝑢. 

Biểu thức toán học được mã hoá trong hàm 𝒩(𝑥, 𝑡; 𝜃), 

với: 

 𝜃: tập trọng số của mạng nơ-ron; 

 𝑥1, … , 𝑥𝑛: toạ độ không gian đầu vào; 

 𝑡: biến thời gian. 

Đầu ra 𝑢𝜃(𝑥, 𝑡) sẽ được dùng để tính đạo hàm theo 

không gian và thời gian thông qua vi phân tự động, 

được biểu diễn trong sơ đồ với biểu tượng “∂ 

AutoDiff”. 

3.2. Mạng thông tin vật lý 

Từ đầu ra 𝑢𝜃, hệ thống tính toán ba loại sai số chính: 

3.2.1. Sai số từ dữ liệu quan sát: 

ℒ𝑑𝑎𝑡𝑎 =  𝑀𝑆𝐸𝑑𝑎𝑡𝑎 =
1

𝑁𝑑
∑|𝑢𝜃(𝑥𝑖, 𝑡𝑖) − 𝑢𝑖|2

𝑁𝑑

𝑖=1

 

Trong đó: 

 𝑁𝑑: số điểm dữ liệu thực nghiệm. 

 𝑢𝑖: giá trị đo tại (𝑥𝑖 , 𝑡𝑖). 

Mục tiêu: đây là sai số bình phương giữa đầu ra mạng 

và giá trị quan sát thực tế. Sai số này đảm bảo mạng học 

được mối quan hệ từ dữ liệu đầu vào đến giá trị vật lý 

quan sát. 

3.2.2. Sai số tại điều kiện biên / điều kiện đầu: 

ℒ𝑏𝑐 =  𝑀𝑆𝐸𝑏𝑐 =
1

𝑁𝑏
∑|𝑢𝜃(𝑥𝑖, 0) − 𝑢0(𝑥𝑖)|2

𝑁𝑏

𝑖=1

 

Trong đó: 

 𝑁𝑏: số điểm biên hoặc thời điểm ban đầu. 

 𝑢0(𝑥): nghiệm đã biết tại biên hoặc khởi tạo. 

Mục tiêu: đây là sai số bình phương giữa giá trị dự đoán 

𝑢(𝑥𝑖) và điều kiện biên/điều kiện ban đầu tại các điểm 

𝑥𝑖. Sai số này giúp mạng học được điều kiện khởi tạo 

hoặc giá trị tại biên không gian. Mạng phải thỏa mãn 

các điều kiện ban đầu như nhiệt độ tại 𝑡 = 0 hoặc điều 

kiện Dirichlet tại biên. 
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3.2.3. Sai số phần dư vật lý: 

Đây là thành phần cốt lõi của PINNs, chính là tư tưởng 

"AI hiểu vật lý". 

Giả sử phương trình đạo hàm riêng được mô tả bởi toán 

tử: 

𝒩[𝑢](𝑥, 𝑡) = 𝑓(𝑥, 𝑡) 

thì phần dư là sai số giữa nghiệm mạng và nghiệm đúng: 

ℛ𝑝ℎ𝑦𝑠(𝑥, 𝑡) : = 𝒩[𝑢𝜃](𝑥, 𝑡) − 𝑓(𝑥, 𝑡) 

Ví dụ: với phương trình nhiệt: 

∂𝑢

∂𝑡
= 𝛼

∂2𝑢

∂𝑥2
⇒ ℛ𝑝ℎ𝑦𝑠(𝑥, 𝑡) =

∂𝑢𝜃

∂𝑡
− 𝛼

∂2𝑢𝜃

∂𝑥2
 

Đạo hàm này được tính bằng vi phân tự động thông qua 

đồ thị tính toán của mạng nơ-ron. Hàm mất mát phần 

dư: 

ℒ𝑝ℎ𝑦𝑠 =
1

𝑁𝑓
∑|ℛ𝑝ℎ𝑦𝑠(𝑥𝑘 , 𝑡𝑘)|

2

𝑁𝑓

𝑘=1

 

Trong đó: 

 𝑁𝑓: số điểm đối chiếu vật lý, được chọn ngẫu nhiên 

trong toàn miền không gian, thời gian. 

Mục tiêu: đây là phần dư của phương trình vi phân, 

kiểm tra mức độ tuân thủ vật lý của nghiệm mạng. Sai 

số này giúp mô hình học được nghiệm sao cho thỏa mãn 

phương trình vật lý tại mọi điểm không có nhãn. 

3.3. Hàm mất mát tổng  

Toàn bộ quá trình huấn luyện tối ưu tham số θ của mạng 

bằng cách tối thiểu hóa hàm mất mát tổng hợp: 

ℒ(𝜃) = 𝜆data ℒdata + 𝜆𝑏𝑐ℒ𝑏𝑐 + 𝜆phys ℒphys  

𝜃∗ = 𝑎𝑟𝑔 min
𝜃

𝐿(𝜃) 

Với 𝜆data , 𝜆𝑏𝑐, 𝜆phys : trọng số điều chỉnh mức ưu tiên 

của từng thành phần. Ví dụ nếu dữ liệu ít tăng 𝜆data . 

Nếu điều kiện biên quan trọng tăng 𝜆𝑏𝑐. 

Raissi et al. [1] đã trình bày rõ cách xây dựng toán tử vi 

phân từ mạng nơ-ron thông qua vi phân tự động và tính 

toán hàm mất mát vật lý tại các điểm đối chiếu vật lý. 

Phương pháp này cho phép mô hình "học" phương trình 

vật lý mà không cần rời rạc hóa miền. 

Theo Faroughi et al. [3], các phiên bản PINNs hiện đại 

còn thêm vào hàm mất mát biên (boundary condition 

loss) để xử lý các ràng buộc Dirichlet hoặc Neumann. 

3.4. Tính đạo hàm bằng vi phân tự động 

PINNs dựa vào cơ chế vi phân tự động (automatic 

differentiation) trong các thư viện như TensorFlow 

hoặc PyTorch để tính đạo hàm bậc cao. Điều này giúp 

giảm thiểu lỗi rời rạc và cho phép xây dựng hàm mất 

mát từ phương trình vật lý một cách linh hoạt. Ta có 

thể: 

 Tính đạo hàm theo không gian và thời gian lên đầu 

ra của mạng. 

 Áp dụng phương trình vật lý vào hàm mất mát mà 

không cần viết tay đạo hàm. 

 Các đạo hàm này được sử dụng để kiểm tra phần dư 

vật lý của phương trình đạo hàm riêng. 

Toscano et al. [4] cho rằng khả năng tự động tính đạo 

hàm chính là lý do khiến PINNs trở thành lựa chọn ưu 

việt so với phương pháp số truyền thống trong nhiều 

tình huống có điều kiện biên phức tạp. 

3.5. Phân loại các nhánh phát triển và so sánh ưu, 

nhược điểm 

3.5.1. Phân loại các nhánh PINNs 

Các nhánh phát triển của PINNs có thể được phân loại 

thành ba hướng chính: 

Bảng 2. Phân loại các nhánh phát triển PINNs 

Nhánh phát 

triển 

Tên gọi tiêu 

biểu 

Mục tiêu cải tiến 

Chia miền / phân 

vùng 
XPINNs 

Khả năng mở rộng 

không gian lớn, 

giảm chi phí cục bộ 

Tăng khả năng hội 

tụ / thích nghi 

không gian 

hp-VPINNs, 

gPINNs 

Giải quyết bất 

thường gradient, 

tăng độ chính xác 

hội tụ 

Học toán tử sâu / 

Fourier-based 

FNO, PINO, 

MgFNO, 

PINTO 

Tổng quát hóa trên 

miền mới, tăng tốc 

suy diễn 

3.5.2. So sánh tổng hợp ưu và nhược điểm các nhánh 

của PI 

Bảng 3. So sánh tổng hợp ưu và nhược điểm các nhánh 

của PINNs 

Biến 

thể 

Nguồn 

tham 

khảo 

Ý tưởng cải 

tiến chính 

Ưu điểm Nhược điểm 

PINN

s 

(gốc) 

Raissi 

et al. [1] 

Ánh xạ hàm 

+ phần dư 

Đơn giản, 

dễ huấn 

luyện 

Bất thường 

gradient, 

không mở 

rộng. 

XPIN

Ns 

Jagtap 

et al. [5] 

Phân chia 

miền tính 

toán thành 

các tiểu 

miền, mỗi 

miền huấn 

luyện một 

mạng riêng 

biệt, ghép lại 

bằng điều 

kiện tiếp 

nối. 

Hỗ trợ 

song song 

hóa tốt. 

Khả năng 

mở rộng 

cho miền 

tính toán 

lớn. 

Thiết kế giao 

tuyến và 

đồng bộ hoá 

phức tạp. 
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hp-

VPIN

Ns 

Kharaz

mi et al. 

[6] 

Kết hợp tinh 

chỉnh cục bộ 

kích thước 

lưới (h) và 

bậc nội suy 

(p), giúp 

mạng thích 

ứng với 

nghiệm có 

biến thiên 

nhanh hoặc 

nghiệm 

nhọn. 

Tăng độ 

chính xác 

cho bài 

toán có 

đặc trưng 

cục bộ. 

Hội tụ 

nhanh 

hơn 

PINNs cổ 

điển. 

Đòi hỏi chiến 

lược phân 

vùng và tối 

ưu thích nghi 

tinh vi. 

gPIN

Ns 

Yu et al. 

[7] 

Bổ sung các 

đạo hàm bậc 

cao vào hàm 

mất mát, 

giúp cải 

thiện dòng 

gradient và 

giảm tình 

trạng mất ổn 

định khi 

huấn luyện. 

Ổn định 

gradient, 

tăng khả 

năng hội 

tụ. 

Tăng chi phí 

tính toán do 

phải lấy đạo 

hàm nhiều 

bậc. 

FNO/

PINO

/PIN

TO 

 FN

O: Li et 

al. [8]  

 PIN

O: 

Chen, 

Xu, et 

al. [9] 

 PIN

TO: 

Boya & 

Subram

ani [10] 

Không học 

nghiệm 

điểm 

𝑢(𝑥, 𝑡), mà 

học ánh xạ 

toán tử 

𝒢: 𝑓 ↦ 𝑢, 

cho phép 

tổng quát 

hóa trên toàn 

miền. 

Suy diễn 

nhanh, 

đặc biệt 

phù hợp 

cho hệ 

PDEs 

tham số 

hóa. 

Tổng quát 

hóa tốt 

trên miền 

chưa 

thấy. 

Cần lượng 

dữ liệu đầy 

đủ và phân 

phối tốt. 

MgF

NO 

Guo & 

Li [11] 

Mở rộng 

FNO với 

phương 

pháp đa 

lưới, kết hợp 

biến đổi 

Fourier và 

phân giải 

nhiều tỉ lệ, 

đạt độ chính 

xác vượt trội 

trong các bài 

toán vật lý 

không gian 

cao. 

Sai số cực 

thấp so 

với 

PINNs cổ 

điển. 

Hiệu quả 

cao với 

các bài 

toán đa 

chiều, 

phức tạp. 

Đòi hỏi tài 

nguyên GPU 

mạnh và tiền 

xử lý dữ liệu 

tốt. 

3.5.3. So sánh định lượng giữa các biến thể 

Bảng 4, so sánh định lượng các biến thể PINNs, tổng 

hợp từ các bài báo công bố chính thức trong giai đoạn 

2019-2024. Bảng trình bày sai số tương đối chuẩn hóa 

(Relative L2 Error %) trên một số bài toán chuẩn trong 

cộng đồng PINNs: Burgers 1D, Darcy 2D, và Navier–

Stokes 2D không nén. Các con số được lấy nguyên văn 

từ kết quả thực nghiệm trong các bài báo, giúp minh 

họa mức độ cải tiến qua từng biến thể. 

Bảng 4. So sánh hiệu suất định lượng của các biến thể  

(Chỉ số: Sai số tương đối chuẩn hóa L2 – %) 

Phương 

pháp 

Burgers 

1D 

Darcy 

2D 

Navier–

Stokes 

2D 

Nguồn 

tham 

khảo 

PINNs 

(gốc) 

0,067 – 6,99 Raissi et 

al. [1] 

XPINNs 0,593 – 2,10 Jagtap et 

al. [5] 

hp-

VPINNs 

– 0,88 1,47 Kharazmi 

et al. [6] 

gPINNs 0,052 – 1,98 Yu et al. 

[7] 

FNO 1,60 0,96 1,28 Li et al. [8] 

PINO 0,742 – – Chen, Xu, 

et al. [9] 

PINTO 0,48 

(seen) 

– 0,52 Boya & 

Subramani 

[10] 

MgFNO 0,17 0,28 0,22 Guo & Li 

[11] 

Tổng kết hiệu suất: 

Bảng 5. So tổng hợp hiệu suất các biến thể của PINNs 

Biến thể Thế mạnh chính Hiệu suất tổng 

quát 

PINNs 

(gốc) 

Bài toán 1D đơn 

giản 

Tốt (1D), yếu (2D) 

XPINNs Miền lớn, song song Vừa 

hp-

VPINNs 

Nghiệm biến thiên 

mạnh 

Tốt (2D) 

gPINNs Ổn định gradient Tốt (1D, 2D vừa 

phải) 

FNO Học toán tử Trung bình 

PINO Mới, chưa đủ dữ 

liệu 

Cần thêm kiểm 

chứng 

PINTO Tối ưu 2D chất lưu Rất tốt 

MgFNO Tốt mọi chiều Xuất sắc toàn diện 

4. Phân tích ưu điểm, thách thức và hướng phát 

triển 

4.1. Ưu điểm, thách thức khi triển khai 

PINNs mang lại nhiều tiềm năng vượt trội với nhiều ưu 

điểm: 

Thứ nhất, tận dụng tri thức vật lý hiệu quả: PINNs 

không yêu cầu lượng lớn dữ liệu thực nghiệm nhờ khai 
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thác tri thức từ phương trình vật lý, điều này đặc biệt 

hữu ích trong các lĩnh vực như khí tượng, địa vật lý, y 

sinh, nơi dữ liệu khan hiếm Cuomo et al. [12] và Raissi 

et al. [1]. 

Thứ hai, tự động đảm bảo tính đúng đắn vật lý: thông 

qua hàm mất mát vật lý, PINNs đảm bảo nghiệm luôn 

tuân thủ các định luật cơ bản, giúp loại bỏ các nghiệm 

"ảo" Raissi et al. [1] và Toscano et al. [4]. 

Thứ ba, linh hoạt với các dạng bài toán: có thể xử lý 

đồng thời nhiều phương trình và điều kiện biên ràng 

buộc Cuomo et al. [12]. 

Cuối cùng, giảm thiểu rời rạc hóa không gian, thời 

gian: nhờ sử dụng vi phân tự động, PINNs không cần 

xây lưới rời rạc như phương pháp phần tử hữu hạn, giúp 

tiết kiệm bộ nhớ De Ryck & Mishra [13]. 

Tuy nhiên, PINNs cũng đối mặt với nhiều thách thức 

kỹ thuật: 

Thứ nhất, mất cân bằng trong hàm mất mát: huấn luyện 

PINNs là một quá trình tối ưu đa mục tiêu (dữ liệu, 

phương trình, và điều kiện biên), nếu cân chỉnh các 

trọng số 𝜆  không tốt có thể khiến mô hình hội tụ kém 

Toscano et al. [4], De Ryck & Mishra [13], Faroughi et 

al. [3]. 

Thứ hai, thời gian huấn luyện dài: do việc tính đạo hàm 

nhiều lần bằng vi phân tự động, đặc biệt với bài toán 

nhiều chiều Cuomo et al. [12], Kim, D et al. [14]. 

Thứ ba, hiện tượng bất thường gradient: do phải tính 

đạo hàm bậc cao qua nhiều lớp mạng, do đó có thể gây 

ra hiện tượng suy giảm hoặc bùng nổ gradient, ảnh 

hưởng đến độ hội tụ De Ryck & Mishra [13], Faroughi 

et al. [3]. 

Cuối cùng, khó khăn trong chọn điểm đối chiếu vật lý: 

chất lượng nghiệm phụ thuộc nhiều vào việc chọn các 

điểm này trong miền tính toán Cuomo et al. [12], De 

Ryck & Mishra [13]. 

4.2. Các hướng nghiên cứu tương lai 

Các hướng nghiên cứu chính trong tương lai bao gồm: 

PINNs thích ứng (Adaptive PINNs), sử dụng phương 

pháp lấy mẫu thích ứng để tự động chọn điểm đối chiếu 

vật lý tại vùng sai số cao Toscano et al. [12]; chia miền 

tính toán (Domain decomposition), nhằm chia nhỏ miền 

bài toán thành các miền con (DD-PINNs) để huấn luyện 

song song hiệu quả De Ryck & Mishra [13]; học chuyển 

giao (Transfer Learning), tận dụng kết quả từ bài toán 

đơn giản để khởi tạo mô hình phức tạp, giúp giảm thời 

gian huấn luyện Toscano et al. [4]; PINNs cho hệ đa vật 

lý và đa tỉ lệ, mở rộng mô hình để giải các hệ phức tạp 

có nhiều trường tương tác Kim, D et al. [14]; và 

MgFNO, phương pháp kết hợp FNO với thuật toán đa 

lưới V-cycle để khắc phục hiện tượng bất thường 

gradient. 

5. Đề xuất ứng dụng tại Việt Nam 

PINNs và các biến thể của nó không chỉ mang lại tiềm 

năng lý thuyết trong việc giải phương trình đạo hàm 

riêng, mà còn mở ra nhiều hướng ứng dụng thực tiễn 

trong bối cảnh Việt Nam, nơi thường gặp thách thức về 

dữ liệu khan hiếm, điều kiện biên không đầy đủ và hạ 

tầng tính toán hạn chế. 

Dựa trên nhu cầu thực tế và các kết quả định lượng được 

tổng hợp ở các mục trên, chúng tôi đề xuất ba nhóm lĩnh 

vực ứng dụng ưu tiên cho PINNs và các biến thể nhẹ tại 

Việt Nam, cụ thể như sau: 

5.1. Mô phỏng khí tượng, thủy văn 

Việt Nam là quốc gia chịu ảnh hưởng nặng nề bởi biến 

đổi khí hậu, với các hiện tượng như mưa cực đoan, xâm 

nhập mặn, và lũ quét gia tăng về tần suất và cường độ. 

Các hệ thống cảnh báo sớm thường gặp khó khăn do: 

 Thiếu dữ liệu quan trắc đều đặn theo không gian, 

thời gian; 

 Mô hình vật lý truyền thống cần lưới tinh và chi phí 

tính toán lớn; 

 Độ phân giải không gian còn thấp, đặc biệt ở vùng 

núi hoặc ven biển. 

Trong bối cảnh này, các mô hình PINNs và các biến thể 

hoàn toàn có thể tích hợp để: 

 Mô phỏng mực nước lũ, trường nhiệt độ mặt nước 

(SST), hoặc dòng chảy bề mặt; 

 Dự báo lan truyền lũ trên nền dữ liệu đầu vào giới 

hạn; 

 Tổng quát hóa theo điều kiện biên và địa hình biến 

đổi, điều mà PINNs gốc có thể thực hiện thông qua 

residual vật lý. 

5.2. Mô hình địa chất, địa vật lý 

Trong lĩnh vực thăm dò địa chất, việc xác định cấu trúc 

tầng đá từ tín hiệu sóng địa chấn (seismic wave) là một 

bài toán ngược điển hình, thường được giải bằng 

phương pháp nghịch đảo hoặc mô hình hóa sóng 

2D/3D. Tuy nhiên, các phương pháp truyền thống 

thường gặp trở ngại do: 

 Không đủ độ phân giải không gian, đặc biệt ở khu 

vực miền núi phía Bắc và Tây Nguyên; 

 Mô hình hóa nghịch đảo toàn sóng (FWI) đòi hỏi 

siêu máy tính; 

 Dữ liệu đo sóng có nhiễu và không liên tục. 

PINNs, đặc biệt khi kết hợp với mô hình gPINNs hoặc 

hp-VPINNs, có thể: 

 Mô phỏng lan truyền sóng địa chấn 2D; 

 Học ánh xạ từ tín hiệu biên sang trường sóng trong 

lòng đất; 

 Áp dụng trong bài toán ngược: suy đoán tốc độ lan 

truyền, mật độ hoặc các dị thường dưới lòng đất. 
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5.3. Y sinh học, mô phỏng lan truyền 

Trong y học mô phỏng, đặc biệt với các ứng dụng phi 

truyền thống như: 

 Mô hình khuếch tán thuốc trong mô học (tissue-

based drug transport); 

 Lan truyền bệnh truyền nhiễm (dịch tễ học PDEs-

based như SEIR-PDEs); 

 Mô phỏng dẫn truyền tín hiệu thần kinh hoặc dòng 

máu vi mạch; 

PINNs cho phép mô phỏng các hệ PDEs phản ứng – 

khuếch tán (reaction–diffusion) trong trường hợp: 

 Thiếu dữ liệu đầy đủ trên toàn mô hình sinh học; 

 Điều kiện biên được đo đạc tại một vài lát cắt hoặc 

thời điểm; 

 Nghiệm thật không thể truy cập trực tiếp (ví dụ: dẫn 

truyền thuốc trong mô sâu). 

6. Kết luận và kiến nghị 

6.1. Kết luận 

PINNs là một trong những hướng tiếp cận tiên tiến 

trong lĩnh vực học máy khoa học, cho phép kết hợp hiệu 

quả giữa mô hình học sâu và tri thức vật lý. Với khả 

năng tích hợp các phương trình vi phân trực tiếp vào 

quá trình huấn luyện mạng nơ-ron, PINNs đã mở ra một 

lối đi mới trong việc giải quyết các bài toán mô phỏng 

vật lý truyền thống mà không cần đến rời rạc hóa hoặc 

lưới tính toán phức tạp. 

Bài báo này đã trình bày tổng quan về kiến trúc, nguyên 

lý hoạt động, ưu điểm, thách thức và xu hướng phát 

triển của PINNs. Các nghiên cứu gần đây cho thấy 

PINNs không chỉ giải quyết được các bài toán trực tiếp 

và bài toán nghịch đảo trong môi trường dữ liệu khan 

hiếm, mà còn có tiềm năng lớn trong các lĩnh vực như 

mô phỏng đa tỉ lệ, hệ thống đa vật lý, và bài toán nghịch 

đảo trong thực tiễn. 

6.2. Kiến nghị 

Tuy nhiên, để PINNs có thể được ứng dụng rộng rãi hơn 

trong công nghiệp và nghiên cứu, các vấn đề như tối ưu 

hóa hiệu quả, lựa chọn điểm đối chiếu vật lý, chuẩn hóa 

hàm mất mát và giảm thời gian huấn luyện cần tiếp tục 

được quan tâm. Những hướng nghiên cứu như lấy mẫu 

thích ứng, phân chia miền, và phát triển các biến thể 

như XPINNs, hp-VPINNs, MgFNO đang mở ra nhiều 

triển vọng. 

Tại Việt Nam, PINNs là một chủ đề còn mới nhưng đầy 

tiềm năng, đặc biệt trong các lĩnh vực như mô hình khí 

tượng, thủy văn, địa chất, môi trường và y sinh học. 

Việc tiếp cận, nghiên cứu và ứng dụng PINNs sẽ giúp 

nâng cao năng lực mô phỏng, dự báo và ra quyết định 

của các hệ thống khoa học kỹ thuật trong nước. 
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Abstract In recent years, Physics-Informed Neural Networks (PINNs) have emerged as a promising approach in 

scientific computing by integrating artificial intelligence with traditional physics-based models. PINNs incorporate 

differential equations (ODEs, PDEs) directly into the training process of neural networks, enabling the construction 

of models that are both physically consistent and capable of handling real-world data. 

This paper provides a comprehensive overview of PINNs, including their theoretical foundations, network 

architecture, training mechanisms, and typical applications such as solving partial differential equations, inverse 

modeling, dynamical systems, and multiphysics simulations. It also discusses key advantages, current technical 

challenges, and future research directions, including adaptive PINNs, domain decomposition strategies, and advanced 

variants such as XPINNs, hp-VPINNs, and MgFNO. 

In conclusion, PINNs represent a powerful tool for problems involving limited data but requiring high physical 

fidelity. Their development and application in Vietnam are both timely and essential, contributing to the advancement 

of scientific computing and artificial intelligence research. 

Keywords Physics-Informed Neural Networks, physical modeling, differential equations, scientific machine 
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