

Factors affecting customers' purchase decisions on Over-the-Counter Medicines in District 4, Ho Chi Minh City in 2022

Ngo Ngoc Anh Thu, Le Minh Nam, Nguyen Thanh Nghia*

Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

*ntnghia@ntt.edu.vn

Abstract

Over-the-counter medicines play an important role in community healthcare in Vietnam, particularly with the rise of self-medication during and after the COVID-19 pandemic. This study examines factors influencing customers' purchase decisions for Over-the-counter medicines at community pharmacies in District 4, Ho Chi Minh City. A mixed-methods approach was used, comprising qualitative interviews with 30 customers and a cross-sectional survey of 400 adults purchasing Over-the-counter medicines at 77 pharmacies from June to August 2022. Convenience sampling with stratification by pharmacy scale and location was applied. Data collected using a five-point Likert questionnaire were analyzed with SPSS 22.0, employing Cronbach's alpha, Exploratory Factor Analysis, and multiple linear regression. The results indicate that medicine advertising ($\beta = 0.479$), medicine quality ($\beta = 0.357$), and reference groups ($\beta = 0.358$) significantly influence purchase decisions, explaining 54.6% of the variance. Advertising had the strongest effect, reflecting the growing impact of media and digital marketing, while price and packaging were not statistically significant. The findings offer practical implications for pharmacy management and patient counseling.

Received 01/12/2025
Accepted 27/01/2026
Published 28/01/2026

Keywords

Over-the-counter medicines, purchase decision, reference groups, consumer behavior, Ho Chi Minh City.

® 2026 Journal of Science and Technology - NTTU

1 Introduction

Over the counter (OTC) medications play a crucial role in providing accessible, timely, and cost - effective healthcare [1]. The demand for OTC products has grown in Vietnam, particularly during the COVID-19 pandemic, when people increasingly turned to social media platforms to purchase medicines, often without proper guidance [2]. Misuse, adverse effects, drug interactions, and delayed treatment results are just a few of the serious hazards associated with such

methods [3]. Supply chains and consumer behavior were also impacted by the pandemic: demand changed from non-essential hospital medications to preventive and immunity - boosting items, the cost of pharmaceutical ingredients increased, and social distancing limited access to pharmacies. In order to guarantee the safe and efficient use of medications, pharmacists, pharmaceutical companies, and health authorities must comprehend the elements that affect consumers' decisions to purchase OTC medications [4].

Although studies have examined OTC purchasing behavior globally and in Viet Nam [5, 6], socio-economic changes following COVID-19, especially in densely populated areas like District 4 (old name at the time of investigation) of Ho Chi Minh City (HCMC) (population 203,060 in 2021, with 96 certified pharmacy establishments as of June 2022), create a need for updated evidence [7]. This study aims to investigate the demographic characteristics of OTC consumers in District 4 and assess the impact of five key factors: price, reference group, packaging, advertisement, and medicine quality on their purchasing decisions. Consumer decision-making for OTC medicines is influenced by multiple psychological, economic, and social factors, as described in Kotler's consumer behavior theory [8, 9]. Five major factors are identified as relevant to customer decisions in District 4, HCMC: price, medicine quality, reference groups, medicine advertising, and medicine packaging, base on this framework and empirical findings from previous studies.

First, price represents the monetary sacrifice required to obtain a medicine and often serves as a heuristic for perceived quality. Medicine price significantly influences OTC purchase decisions, though the strength of this effect varies across contexts [10, 11]. Pricing continues to be a major factor in determining purchasing behavior since consumers may view reduced prices as signs of lower quality. The author proposes hypothesis H1: Medicine price has a positive effect on customers' decisions to purchase OTC medicines.

Second, it has been repeatedly demonstrated that one of the best indicators of OTC purchasing decisions is the quality of medications, including their safety and therapeutic efficacy. Prior empirical evidence indicates that consumers pay close attention to medicine quality due to the direct health implications associated with use [10, 11]. Customers evaluate quality based on past experience, professional advice, product information, and external cues, making it a critical factor in decision-making. The hypothesis H2 is Medicine quality has a positive effect on customers' decisions to purchase OTC medicines.

Third, consumers are influenced both normatively and informatively by reference groups, such as friends, family, or medical experts. Consumer views toward over-the-counter medications are greatly influenced by reference group recommendations, according to earlier research [10-12]. Given the health - related risks associated with self - medication, consumers often rely on trusted social sources when selecting OTC products. The author puts up hypothesis H3: Reference group influence has a positive effect on customers' decisions to purchase OTC medicines.

Fourth, advertising serves as an indirect means of delivering product information and shaping consumer perceptions. Although mass media advertising is effective at raising awareness and informing, its ability to change behavioral choices is still a matter of conflicting evidence [11, 13]. The role of advertising deserves more investigation in the Vietnamese context, where there is still little public awareness of OTC medications.

Finally, pharmaceutical packaging boosts brand recognition, provides essential product details, and shapes how consumers perceive quality. Packaging can have a significant impact on purchasing decisions at the point of sale, even though it did not approach statistical significance [10, 14]. Thus, its relevance in the current socio-economic environment remains an open question. Hypothesis H5 was proposed: Medicine packaging has a positive effect on customers' decisions to purchase OTC medicines.

Purchase decisions are influenced by a variety of psychological, social, and marketing factors, according to Philip Kotler's theory of consumer behavior. Based on this theoretical and empirical foundation [10, 11] highlighted several factors influencing customers' choices of OTC medicines. These models, however, were developed more than a decade ago and require revision to reflect current socio-economic conditions. Incorporating insights from recent international research and findings from the exploratory qualitative phase of this study, the research model is updated to include five key factors affecting OTC medicine purchase decisions in District 4, HCMC.

2 Research Objects and Methods

2.1 Research Subjects

Research subjects: Factors influencing customers' decisions to purchase non-prescription drugs.

Survey respondents: Customers aged 18 years or older who visited community pharmacies in District 4, HCMC, to purchase OTC medicines.

Inclusion criteria: (1) Able to understand and respond to verbal instructions; (2) Age 18 or above; (3) Willing to participate in the survey.

Exclusion criteria: (1) Incomplete responses to the questionnaire; (2) Multiple responses selected in a single-choice question.

2.2 Research Design and Methods

Research design: The study adopted a cross-sectional descriptive design with a combination of qualitative and quantitative research methods.

2.2.1 Qualitative Research

Qualitative research aimed to explore customer perceptions and refine the research scale. The steps included: (1) Reviewing relevant literature and constructing qualitative interview questions; (2) Conducting in-depth interviews with 30 customers at pharmacies in District 4 to collect opinions on factors affecting OTC medicine purchasing decisions; (3) Drafting an initial scale based on interview results and relevant theory. In-depth interviews were conducted face-to-face to identify underlying reasons for preferences, perceptions, and beliefs regarding OTC medicines.

2.2.2 Preliminary Quantitative Study

The preliminary survey aimed to validate and refine the questionnaire before the main study. Steps included: (1) Consulting faculty members at Nguyen Tat Thanh University to adjust observable variables, remove duplicates, and finalize the preliminary questionnaire; (2) Conducting direct interviews with 50 customers using a 5-point Likert scale to measure 29 observable variables across five factors (price, packaging, advertisement, medicine quality, reference group) and five variables for the overall purchasing decision; (3) Analyzing data for reliability using Cronbach's alpha via SPSS 22 to finalize the scale.

2.2.3 Official Quantitative Study

Sampling method: Data were collected from June 2022 to September 2022 by directly surveying customers at community pharmacies in District 4, HCMC, collecting and excluding incomplete questionnaires, ensuring the minimum sample size required for the study. The study used a non-probability sampling method with a convenient sampling technique in terms of time and cost, in which, standard sampling will perform overall grouping according to 2 control attributes: (1) Having purchased non-prescription drugs at community pharmacies at the time of the survey or 3 months before and (2) living in HCMC, then performing convenient sampling.

Sample size determination: For a large population, the minimum sample size was calculated using:

$$n = \frac{z^2_{(1 - \frac{\alpha}{2})} \times (p \times q)}{e^2}$$

Where $z = 1.96$ for 95% confidence, $p = 0.5$, $q = 1 - p$, and margin of error $e = 0.05$. This resulted in $n = 385$. To increase reliability, a final sample of 400 respondents was chosen.

Pharmacy selection: Out of 96 pharmacies in District 4 (2022), a stratified random sampling method was applied to select 77 pharmacies. Each pharmacy surveyed 5 to 6 customers.

2.2.4 Data Collection and Analysis

Data were collected via structured a 5-point Likert scale questionnaires (1 = Strongly Disagree, 5 = Strongly Agree) including Section A: Demographic information; Section B: Factors affecting OTC medicine purchasing decisions.

Analysis included: Reliability testing with Cronbach's alpha (acceptable if ≥ 0.6 ; Exploratory Factor Analysis (EFA) with $KMO \geq 0.5$, Bartlett's test $p \leq 0.05$, factor loading > 0.5 , total variance explained $\geq 50\%$, eigenvalue > 1 ; Multiple linear regression to identify factors influencing purchasing decisions.

Scale development: Based on customer behavior theories and modified by qualitative research. Price, packaging, advertising, medication quality, and reference group were the five primary variables that were measured. A 5-point Likert scale was used to

measure the observable variables for each aspect, and previous research or qualitative findings were cited (Appendix 1).

2.2.5 Data Analysis and Regression Model

Data collected from the survey were analyzed using SPSS 22. The analysis included the following steps:

The reliability of the research scale was evaluated using Cronbach's Alpha. A Cronbach's alpha ≥ 0.6 was considered acceptable, while $\alpha \geq 0.8$ indicated excellent reliability. Items with item-total correlation < 0.3 were removed to improve the internal consistency of each factor. This ensured that the observable variables reliably measured their respective constructs. Exploratory Factor Analysis (EFA) was conducted to examine the underlying factor structure and reduce the number of variables. The following criteria were applied: Kaiser-Meyer-Olkin (KMO) coefficient ≥ 0.5 ; Bartlett's test of sphericity $p \leq 0.05$; Factor loadings ≥ 0.5 ; Total variance explained $\geq 50\%$; Eigenvalue > 1 ; Difference between factor loadings of an item across factors ≥ 0.3 to ensure discriminant validity.

EFA allowed the identification of the main dimensions affecting customers' decisions to purchase OTC medicines, consolidating correlated variables into five core factors: price, packaging, advertisement, medicine quality, and reference group.

Multiple Linear Regression: A multiple linear regression model was built to quantify the influence of the five factors on the dependent variable: customer decision to purchase OTC medicines.

Hypothesis testing was conducted at a significance level of 0.05. Assumptions of linearity, independence, normality, and homoscedasticity were checked to ensure model validity. Regression results were interpreted based on standardized beta coefficients to compare the relative impact of each factor.

3 Results

3.1 Reliability of the Scales

The Cronbach's alpha values of the 6 factors range from 0.783 to 0.939 (Table 1), showing that these 6 factors all have good measurement scales, the questionnaire has high reliability, stability, and consistency during

the research process, and the observed variables of the factors have close relationships and correlations with each other.

Table 1 Cronbach's alpha of Research Scales

Factors	Item	Cronbach's alpha
Price of medicine (POD)	5	0.892
Medicine packaging (DP)	6	0.867
Medicine advertisement (DA)	5	0.824
Medicine quality (DQ)	6	0.939
Reference group (RG)	5	0.822
Customers' decision (DOC)	5	0.783

3.2 Exploratory Factor Analysis (EFA)

EFA analysis of independent variables using Principal Component Factoring (PCF) method, Varimax rotation shows that 27 observed variables all meet the value requirements, specifically: KMO coefficient = $0.847 > 0.5$ satisfies the condition; Bartlett test with $\text{Sig.} = 0.00 < 0.05$ (95% confidence level); Eigenvalue = $1.2488 > 1$; total extracted variance $67.841\% > 50\%$ meets the requirements, indicating that the factors are statistically significant; factor loading coefficients are all > 0.5 , demonstrating that these observed variables are all reliable, convergent and discriminant. Variables DP1, DP5, DA2, DA6 and RG4 have the difference in factor loading coefficient of an observable variable between factors of less than 0.3. Therefore, the above variables are excluded. The remaining variables were included in the second exploratory factor analysis.

EFA analysis of independent variables for the second time (PCF), Varimax rotation showed that all 22 observed variables met the value requirements, specifically: KMO coefficient = $0.862 > 0.5$ satisfied the condition; Bartlett test with $\text{Sig.} = 0.00 < 0.05$ (95% confidence level); Eigenvalue = $1.187 > 1$; total extracted variance $72.348\% > 50\%$ met the requirements, indicating that the factors were statistically significant; factor loading coefficients were all > 0.5 , demonstrating that these observed variables were reliable, convergent and discriminant. Thus, 5 factors extracted 72.348% of the variation of observed variables, EFA analysis met the requirements when analyzing in the next steps.

Table 2 Total Variance Explained (the 2nd analysis)

Component	Initial Eigenvalues			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	6.270	28.499	28.499	4.871	22.141	22.141
2	4.196	19.072	47.571	3.655	16.612	38.753
3	2.728	12.402	59.973	2.706	12.298	51.052
4	1.535	6.978	66.951	2.702	12.283	63.335
5	1.187	5.397	72.348	1.983	9.013	72.348
6	0.811	3.684	76.032			

The results in table 2 show that at Eigenvalues = 1.187; 5 factors were extracted from 22 observable variables, 5 factors were kept, and the total variance extracted = 72.348% ($> 50\%$) shows the given factors explain 72.348% of the variation of the data. Factor analysis in the EFA factor rotation matrix, observable variables all have a factor loading factor greater than 0.5 and there is no difference in the factor loading coefficient of an observable variable between factors less than 0.3. All factors are acceptable (Table 3)

Table 3 Rotated Component Matrix (the 2nd analysis)

	Component				
	1	2	3	4	5
DQ3	0.882				
DQ4	0.878				
DQ2	0.870				
DQ1	0.859				
DQ5	0.812				
DQ6	0.778				
POD2		0.860			
POD4		0.836			
POD1		0.815			
POD3		0.808			
POD5		0.756			

	Component				
	1	2	3	4	5
DP2			0.871		
DP4			0.775		
DP6			0.714		
DP3	0.390		0.712		
RG5				0.848	
RG1				0.835	
RG3				0.789	
RG2				0.781	
DA4		0.310			0.811
DA3		0.370			0.760
DA5					0.739

The results of EFA analysis of dependent variables using the PCF factor extraction method and Varimax rotation showed that there were 5 observed variables that met the value requirements, specifically: KMO coefficient = 0.822 > 0.5 met the condition; Bartlett test with Sig. = 0.00 < 0.05 (95% confidence level), total extracted variance was 53.554% $> 50\%$ met the requirement of statistical significance, met the condition with Eigenvalue = 2.678 > 1 ; factor loading coefficients were all > 0.5 , showing that these observed variables were all reliable.

Table 4 Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.678	53.554	53.554	2.678	53.554	53.554
2	0.695	13.904	67.458			
3	0.585	11.695	79.153			
4	0.538	10.753	89.906			
5	0.505	10.094	100.000			

Thus, after evaluating the reliability using Cronbach's alpha and the exploratory factor analysis, the scales have met the requirements of reliability.

3.3 Regression Analysis and Hypothesis Testing

After EFA analysis, 6 factors were formed and included to test the model. Check the suitability of including factors in the regression model by Pearson correlation analysis. Test hypotheses H1 - H5 by regression analysis results.

The independent variables are all correlated with the dependent variable ($\text{sig} < 0.05$), the Pearson r correlation values between the independent variables are all approaching 0, so there is a rather weak correlation with each other, there is no multicollinearity phenomenon. The dependent variable DOC has the strongest correlation coefficient with the independent variable DA (Pearson coefficient = 0.545) and the weakest correlation coefficient with DP (Pearson coefficient = 0.292). Therefore, the research model is

Table 5 Adjusted R² coefficient

Model Summary ^b					
Model	R	R ²	Adjusted R ²	Std. Error of the Estimate	Durbin-Watson
1	0.739 ^a	0.546	0.540	0.46147	2.119
a. Predictors: (Constant), RG, POD, DQ, DA, DP					
b. Dependent Variable: DOC					

Testing the suitability of the regression function: The Sig value of the F test is $0.000 < 0.05$, so the multiple linear regression model is suitable for the data set, can be used and is statistically significant (Table 2).

Table 6 Anova analysis results

ANOVA ^a						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	100.935	5	20.187	94.793	0.000 ^b
	Residual	83.905	394	0.213		
	Total	184.840	399			
a. Dependent Variable: DOC						
b. Predictors: (Constant), RG, POD, DQ, DA, DP						

Testing the significance of the regression coefficients in the model: the independent variables are all statistically significant because they have $\text{Sig.} = 0.000 < 0.05$, so hypotheses H2, H3, H4 are accepted (Table 7)

Table 7 Summary of regression results by Enter method

Model	Unstandardized Coefficients		Beta	t	Sig.	Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	-0.146	0.190		-0.765	0.445		
	POD	0.019	0.032	0.024	0.598	0.550	0.698
							1.432

DP	0.027	0.036	0.031	0.735	0.463	0.669	1.496
DA	0.396	0.033	0.479	11.904	0.000	0.712	1.404
DQ	0.350	0.040	0.357	8.668	0.000	0.680	1.471
RG	0.276	0.027	0.358	10.369	0.000	0.966	1.035

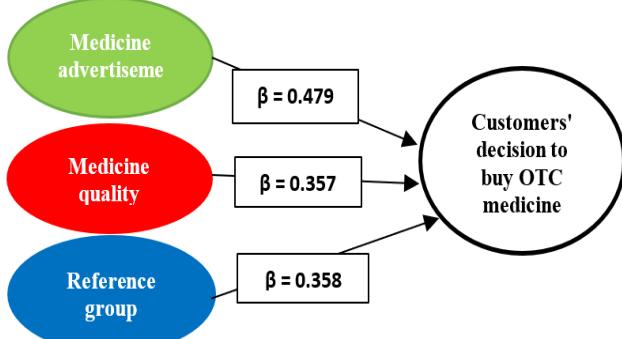
Dependent Variable: Customers' decision in purchasing of OTC medicines (DOC)

Testing the necessary assumptions in linear regression: the Durbin-Watson value of the regression model is 2.119, so the assumption of independence of errors is not violated (Table 5). The frequency chart of the standardized residuals has Mean = 7.81E-16 (approximately 0), Std. Dev = 0.994 (approximately 1), the mode and median are approximately equal to each other and equal to 0, the residual values are randomly distributed in a range around the 0 axis (the mean value of the residuals), in a bell shape. Therefore, it can be concluded that the assumption of normal distribution of the residuals is not violated. The VIF of each independent variable is less than 10 (Table 7), so the assumption of no correlation between the independent variables is not violated, or there is no sign of multicollinearity.

The model does not violate the test hypotheses and is statistically significant after performing regression

tests against the population. Examining the significance level of the independent variables in the regression model shows that there are 3 variables affecting customers' decision to buy non-prescription drugs (DOC), namely: DA, DQ, RG (Sig. < 0.05) are accepted in the regression equation and have a positive impact on the DOC variable. However, the Sig. value of the constant 0.445 > 0.05, so the author removed the constant from the regression equation. The relationship between the dependent variable and the independent variables is shown through:

Unstandardized regression equation: $DOC = 0.396DA + 0.350DQ + 0.276RG$


Standardized Regression Equation: $DOC = 0.479DA + 0.357DQ + 0.358RG$

The order of influence of the factors is presented in Table 5.

Table 8 Determining the importance of independent variables in percentage.

No	Variables	Standardized coefficients	Ratio (%)	Order of influence
1	Medicine advertisement (DA)	0.479	40.12	1
2	Medicine quality (DQ)	0.357	29.90	3
3	Reference group (RG)	0.358	29.98	2
	Total	1.194	100	

The accepted research hypotheses are H2, H3, H4, it can be concluded that the theoretical model is suitable for the research data. The research model is adjusted accordingly (Figure 1).

Figure 1 Adjusted Research Model

4 Discussion of Research Results

The findings of this study provide important insights into the determinants of customers' decisions to purchase OTC medicines in District 4, HCMC. Overall, the analysis shows that demographic characteristics - including gender, age, income, academic level, occupation, and preferred type of pharmacy - do not significantly influence OTC purchasing decisions. Instead, consumers' decisions are shaped primarily by product-related and interaction - related factors, including medicine price, packaging, advertising, quality, and reference-group influence.

Regarding medicine price, the results indicate that price plays a supporting rather than decisive role in OTC purchasing decisions. International studies indicate that price mostly effects purchasing behavior through perceived quality, value, and risk rather than directly [14], even if respondents evaluated prices as typically affordable, which is consistent with results from middle-income nations [5]. Reduced price sensitivity and increased willingness to pay further weaken the independent effect of price once factors like medicine quality and reference groups are considered during health crises.

Similarly, medicine packaging did not reach statistical significance in the final model. While respondents valued sealed and intact packaging as a safety indicator, packaging appears to function mainly as a basic trust and hygiene cue rather than a decisive purchasing factor. Prior studies suggest that packaging plays a stronger role for unfamiliar products or in fast-moving consumer goods, but its impact is weaker for OTC medicines, where professional advice and prior experience dominate decision-making [14]. Secondary packaging is often removed during dispensing, further reducing its influence at the point of decision, in community pharmacy practice. Global research supports this hypothesis, demonstrating that pharmacist counseling and perceived quality outweigh packaging as primary drivers of consumer perception. Third, the findings show distinct differences amongst advertising channels when it comes to medication advertising. It was believed that mass-media advertising (TV, internet, newspapers) was the least effective form of communication, whereas recommendations from pharmacy staff were the most beneficial. This illustrates the ongoing significance of interpersonal influence in Vietnam's pharmaceutical industry, where consumers mostly rely on reliable middlemen and there is a considerable degree of knowledge asymmetry. Research on OTC medicine behavior in different Southeast Asian cultures has shown similar trends.

Fourth, the most important factor overall was the quality of the medication. Every quality-related metric

had a score higher than "Agree" suggesting that consumers place a high value on goods that adhere to manufacturer quality standards and have few negative impacts. This supports earlier research showing that perceived efficacy and safety play a major role in OTC purchase decisions [15]. The findings also highlight concerns about counterfeit and substandard medicines issues that remain prevalent in Viet Nam and influence consumer trust.

Finally, the study indicates that influence from reference groups, especially pharmacists, plays a major role in OTC purchasing. Customers frequently disregard official medical advice since OTC medications are utilized for self-care. Consumers reported little reliance on doctors when purchasing OTC products, but they did express a high preference for pharmacist counsel. However, reliance on pharmacists also exposes systemic problems, such as inconsistent counseling across pharmacies, limited standardization of advisory practices, and insufficient coordination between pharmaceutical companies and retail pharmacies. These limitations may reduce the accuracy and completeness of information provided to customers.

Across all these dimensions, the absence of demographic differences suggests that OTC purchasing decisions in District 4 are driven more by product perceptions and advisory interactions than by socioeconomic characteristics. This underscores the need for enhanced pharmacist training, stronger regulation of OTC advertising, and improved communication from manufacturers to ensure accurate product information reaches consumers.

Several limitations of this study should be acknowledged. The use of convenience sampling may limit representativeness, while the restricted geographical scope (District 4, HCMC) constrains generalizability. In addition, the cross-sectional design prevents causal inference and does not capture changes in consumer behavior over time. Future research should employ probability-based sampling, expand geographic coverage, and consider longitudinal designs. Incorporating mediating variables such as

perceived value, perceived risk, and trust may also provide a more comprehensive understanding of the indirect effects of price and packaging on OTC purchasing decisions.

Acknowledgement

We would like to thank Nguyen Tat Thanh University, HCMC, for their support in this research.

References

1. Hussain, R., Malik, F., & Ahmed, S. (2021). Over-the-counter medication usage and associated risks: A global perspective. *Journal of Pharmaceutical Policy and Practice*, 14(1), 12. <https://doi.org/10.1186/s40545-021-00308-1>
2. Nguyen, P. T., & Pham, L. M. (2022). Social media and the rise of OTC medicine sales during COVID-19 in Vietnam. *Vietnam Journal of Public Health*, 12(1), 10-17.
3. World Health Organization. (2019). *The role of over-the-counter medicines in healthcare systems*. WHO.
4. Kaufman, D., Gupta, N., & Patel, R. (2020). Factors influencing consumer choice of OTC medicines: Evidence from Asia. *BMC Health Services Research*, 20, 895. <https://doi.org/10.1186/s12913-020-05678-9>.
5. Hoang, T. Q., Le, V. T., & Nguyen, H. T. (2018). Consumer behavior on OTC medicine purchase in urban Vietnam. *Vietnam Journal of Pharmacy*, 56(3), 45-52.
6. Tran Van De, Dorofeeva V.V., Loskutova E.E., Lagutkina T.P., Kosova I.V. (2019). Factors influencing community pharmacists' recommendation of over the counter medications in four Vietnam cities. *Tropical Journal of Pharmaceutical Research*, 18(2), 421 427. <https://doi.org/10.4314/TJPR.V18I2.29>.
7. General Statistics Office of Vietnam. (2022). Population and housing census 2021. <https://www.gso.gov.vn>
8. Kotler, P. (1997). *Marketing Essentials*. Labour and Social Publisher. Accessed at <https://thuviensp.thanglong.edu.vn/handle/TLU/7020>.
9. Kotler, P., & Keller, K. L. (2015). *Marketing Management (15th Global ed.)*. Pearson Education
10. Nguyen Vinh Sinh. (2013). Study of Factors affecting over-the-counter medicines .purchasing decision of customers in Ho Chi Minh City. *University of Economics Ho Chi Minh City*.
11. Hua Kim Dung. (2013). Factors affecting over-the-counter medicine purchasing choices in Ho Chi Minh City, *University of Economics Ho Chi Minh City*.
12. Habash, Raeda, and Hani Al-Dmour. (2020). Factors influencing the intention to buy over-the-counter medicines: an empirical study. *International Journal of Pharmaceutical and Healthcare Marketing*.
13. Pankaj Kumar Tiwari. (2016). Effect of Advertisement on buying behavior of OTC Medicines in Nepalese context. *Journal of Advance Academic Research*, Vol. 3 (1), pp.No 123-133.
14. Alagala, M. B., B. M. Bagbi, and A. B. Shaleye. (2018). Impact of pharmaceutical packaging on consumer buying behavior of otc medicines in port Harcourt, Nigeria. *Pharma Innov J* 7 90-5.
15. Le, H. T., Nguyen, D. N., & Pham, T. N. (2020). COVID-19 impact on pharmaceutical retail and consumer behavior in Viet Nam. *Asian Journal of Pharmacy and Health*, 15(2), 23-30.

Các yếu tố ảnh hưởng đến quyết định mua thuốc không kê đơn của khách hàng tại Quận 4, Thành phố Hồ Chí Minh năm 2022

Ngô Ngọc Anh Thư, Lê Minh Nam, Nguyễn Thanh Nghĩa*

Trường Đại học Nguyễn Tất Thành, Thành phố Hồ Chí Minh

*ntnghia@ntt.edu.vn

Tóm tắt Thuốc không kê đơn (OTC) đóng vai trò quan trọng trong chăm sóc sức khỏe cộng đồng tại Việt Nam, đặc biệt trong bối cảnh gia tăng tự điều trị trong và sau đại dịch COVID-19. Nghiên cứu này nhằm phân tích các yếu tố ảnh hưởng đến quyết định mua thuốc OTC của khách hàng tại các nhà thuốc cộng đồng ở Quận 4, Thành phố Hồ Chí Minh (thời điểm trước ngày 01/7/2025). Nghiên cứu sử dụng phương pháp hỗn hợp, bao gồm phỏng vấn định tính 30 khách hàng và khảo sát cắt ngang 400 người trưởng thành mua thuốc OTC tại 77 nhà thuốc trong giai đoạn từ tháng 6 đến tháng 8 năm 2022. Phương pháp chọn mẫu thuận tiện có phân tầng theo quy mô và vị trí nhà thuốc được áp dụng. Dữ liệu thu thập bằng bảng hỏi thang đo Likert 5 mức được phân tích bằng phần mềm SPSS 22.0, sử dụng Cronbach's Alpha, phân tích nhân tố khám phá và hồi quy tuyến tính đa biến. Kết quả cho thấy quảng cáo thuốc ($\beta = 0,479$), chất lượng thuốc ($\beta = 0,357$) và nhóm tham khảo ($\beta = 0,358$) có ảnh hưởng đáng kể đến quyết định mua, giải thích 54,6 % sự biến thiên của quyết định mua thuốc OTC. Trong đó, quảng cáo có tác động mạnh nhất, phản ánh vai trò ngày càng lớn của truyền thông và tiếp thị số, trong khi yếu tố giá cả và bao bì không có ý nghĩa thống kê. Kết quả nghiên cứu cung cấp hàm ý thực tiễn cho công tác quản lý nhà thuốc và tư vấn bệnh nhân.

Từ khóa Thuốc không kê đơn, quyết định mua, nhóm tham khảo, hành vi người tiêu dùng, Thành phố Hồ Chí Minh.

